Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Pairwise agonist scanning predicts cellular signaling responses to combinatorial stimuli

Abstract

Prediction of cellular response to multiple stimuli is central to evaluating patient-specific clinical status and to basic understanding of cell biology. Cross-talk between signaling pathways cannot be predicted by studying them in isolation and the combinatorial complexity of multiple agonists acting together prohibits an exhaustive exploration of the complete experimental space. Here we describe pairwise agonist scanning (PAS), a strategy that trains a neural network model based on measurements of cellular responses to individual and all pairwise combinations of input signals. We apply PAS to predict calcium signaling responses of human platelets in EDTA-treated plasma to six different agonists (ADP, convulxin, U46619, SFLLRN, AYPGKF and PGE2) at three concentrations (0.1, 1 and 10 × EC50). The model predicted responses to sequentially added agonists, to ternary combinations of agonists and to 45 different combinations of four to six agonists (R = 0.88). Furthermore, we use PAS to distinguish between the phenotypic responses of platelets from ten donors. Training neural networks with pairs of stimuli across the dose-response regime represents an efficient approach for predicting complex signal integration in a patient-specific disease milieu.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Experimental and computational methods to study platelet signaling.
Figure 2: PAS.
Figure 3: Neural network model reveals the global platelet response to all agonist combinations.
Figure 4: Donor-specific synergy maps.

Similar content being viewed by others

References

  1. Lloyd-Jones, D. et al. Heart disease and stroke statistics–2009 update: a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Circulation 119, e21–e181 (2009).

    PubMed  Google Scholar 

  2. Furie, B. & Furie, B.C. In vivo thrombus formation. J. Thromb. Haemost. 5, 12–17 (2007).

    Article  CAS  PubMed  Google Scholar 

  3. Bray, D. Protein molecules as computational elements in living cells. Nature 376, 307–312 (1995).

    Article  CAS  PubMed  Google Scholar 

  4. Bray, D. Molecular networks: the top-down view. Science 301, 1864–1865 (2003).

    Article  CAS  PubMed  Google Scholar 

  5. Purvis, J.E., Chatterjee, M.S., Brass, L.F. & Diamond, S.L. A molecular signaling model of platelet phosphoinositide and calcium regulation during homeostasis and P2Y1 activation. Blood 112, 4069–4079 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Siess, W. Molecular mechanisms of platelet activation. Physiol. Rev. 69, 58–178 (1989).

    Article  CAS  PubMed  Google Scholar 

  7. Bohne, A., Fukami, M.H. & Holmsen, H. EDTA inhibits collagen-induced ATP plus ADP secretion and tyrosine phosphorylation in platelets independently of Mg2+ chelation and decrease in pH. Platelets 13, 437–442 (2002).

    Article  CAS  PubMed  Google Scholar 

  8. Lages, B. & Harvey, J.W. Heterogeneous defects of platelet secretion and responses to weak agonists in patients with bleeding disorders. Br. J. Haematol. 68, 53–62 (1988).

    Article  CAS  PubMed  Google Scholar 

  9. Cho, M.J. et al. The roles of alpha IIbbeta 3-mediated outside-in signal transduction, thromboxane A2, and adenosine diphosphate in collagen-induced platelet aggregation. Blood 101, 2646–2651 (2003).

    Article  CAS  PubMed  Google Scholar 

  10. Brass, L.F., Shattil, S.J., Kunicki, T.J. & Bennett, J.S. Effect of calcium on the stability of the platelet membrane glycoprotein IIb-IIIa complex. J. Biol. Chem. 260, 7875–7881 (1985).

    CAS  PubMed  Google Scholar 

  11. Polgar, J. et al. Platelet activation and signal transduction by convulxin, a C-type lectin from Crotalus durissus terrificus (tropical rattlesnake) venom via the p62/GPVI collagen receptor. J. Biol. Chem. 272, 13576–13583 (1997).

    Article  CAS  PubMed  Google Scholar 

  12. Mukherjee, D., Nissen, S.E. & Topol, E.J. Risk of cardiovascular events associated with selective COX-2 inhibitors. JAMA 286, 954–959 (2001).

    Article  CAS  PubMed  Google Scholar 

  13. Yee, D.L., Sun, C.W., Bergeron, A.L., Dong, J.-f. & Bray, P.F. Aggregometry detects platelet hyperreactivity in healthy individuals. Blood 106, 2723–2729 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Panzer, S., Höcker, L. & Koren, D. Agonists-induced platelet activation varies considerably in healthy male individuals: studies by flow cytometry. Ann. Hematol. 85, 121–125 (2006).

    Article  CAS  PubMed  Google Scholar 

  15. Packham, M.A., Guccione, M.A., Chang, P.L. & Mustard, J.F. Platelet-aggregation and release-effects of low concentrations of thrombin or collagen. Am. J. Physiol. 225, 38–47 (1973).

    Article  CAS  PubMed  Google Scholar 

  16. Grant, J.A. & Scrutton, M.C. Positive interaction between agonists in the aggregation response of human-blood platelets-interaction between adp, adrenaline and vasopressin. Br. J. Haematol. 44, 109–125 (1980).

    Article  CAS  PubMed  Google Scholar 

  17. Hallam, T.J., Scrutton, M.C. & Wallis, R.B. Synergistic responses and receptor occupancy in rabbit-blood platelets. Thromb. Res. 27, 435–445 (1982).

    Article  CAS  PubMed  Google Scholar 

  18. Jones, C.I. et al. A functional genomics approach reveals novel quantitative trait loci associated with platelet signaling pathways. Blood 114, 1405–1416 (2009).

    Article  CAS  PubMed  Google Scholar 

  19. Hsueh, R.C. et al. Deciphering signaling outcomes from a system of complex networks. Sci. Signal. 2, ra22 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Nieswandt, B. & Watson, S.P. Platelet-collagen interaction: is GPVI the central receptor? Blood 102, 449–461 (2003).

    Article  CAS  PubMed  Google Scholar 

  21. Knight, C.G. et al. Collagen-platelet interaction: Gly-Pro-Hyp is uniquely specific for platelet Gp VI and mediates platelet activation by collagen. Cardiovasc. Res. 41, 450–457 (1999).

    Article  CAS  PubMed  Google Scholar 

  22. Hers, I. et al. Evidence against a direct role of the integrin alpha2beta1 in collagen-induced tyrosine phosphorylation in human platelets. Eur. J. Biochem. 267, 2088–2097 (2000).

    Article  CAS  PubMed  Google Scholar 

  23. Foster, C.J. et al. Molecular identification and characterization of the platelet ADP receptor targeted by thienopyridine antithrombotic drugs. J. Clin. Invest. 107, 1591–1598 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Covic, L., Gresser, A.L. & Kuliopulos, A. Biphasic kinetics of activation and signaling for PAR1 and PAR4 thrombin receptors in platelets. Biochemistry 39, 5458–5467 (2000).

    Article  CAS  PubMed  Google Scholar 

  25. Shapiro, M.J., Weiss, E.J., Faruqi, T.R. & Coughlin, S.R. Protease-activated receptors 1 and 4 are shutoff with distinct kinetics after activation by thrombin. J. Biol. Chem. 275, 25216–25221 (2000).

    Article  CAS  PubMed  Google Scholar 

  26. Cho, M.J. & Allen, M.A. Chemical stability of prostacyclin (PGI2) in aqueous-solutions. Prostaglandins 15, 943–954 (1978).

    Article  CAS  PubMed  Google Scholar 

  27. Coleman, R.A., Humphrey, P.P.A., Kennedy, I., Levy, G.P. & Lumley, P. Comparison of the actions of U-46619, a prostaglandin H2-analogue, with those of prostaglandin-H2 and thromboxane-A2 on some isolated smooth-muscle preparations. Br. J. Pharmacol. 73, 773–778 (1981).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Roach, T.I.A. et al. Signaling and crosstalk by C5a and UDP in macrophages selectively use PLCbeta 3 to regulate intracellular free calcium. J. Biol. Chem. 283, 17351–17361 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Jain, L.C. & Medsker, L.R. Recurrent Neural Networks: Design and Applications (CRC Press, 1999).

  30. Eugen, D. The use of NARX neural networks to predict chaotic time series. WSEAS Trans. Comp. Res. 3, 182–191 (2008).

    Google Scholar 

  31. Busch, H. et al. Gene network dynamics controlling keratinocyte migration. Mol. Syst. Biol. 4, 199 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Janes, K.A. et al. Systems model of signaling identifies a molecular basis set for cytokine-induced apoptosis. Science 310, 1646–1653 (2005).

    Article  CAS  PubMed  Google Scholar 

  33. Kemp, M.L., Wille, L., Lewis, C.L., Nicholson, L.B. & Lauffenburger, D.A. Quantitative network signal combinations downstream of TCR activation can predict IL-2 production response. J. Immunol. 178, 4984–4992 (2007).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank H. Li for suggesting the permutation test to evaluate the significance of donor clustering. This work was supported by the US National Institutes of Health R01-HL-56621 (S.L.D.), R33-HL-87317 (S.L.D. and L.F.B.) and T32-HG000046 (J.E.P.).

Author information

Authors and Affiliations

Authors

Contributions

M.S.C. designed and performed all experiments. J.E.P. constructed neural network models of platelet activation. M.S.C. wrote the paper with contributions from all authors. L.F.B. advised on experimental conditions, and S.L.D. conceived the study.

Corresponding author

Correspondence to Scott L Diamond.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Tables 1–3, Supplementary Figs. 1–15 and Supplementary Discussion (PDF 3839 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chatterjee, M., Purvis, J., Brass, L. et al. Pairwise agonist scanning predicts cellular signaling responses to combinatorial stimuli. Nat Biotechnol 28, 727–732 (2010). https://doi.org/10.1038/nbt.1642

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt.1642

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research