Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Sex reversal triggers the rapid transition from genetic to temperature-dependent sex

Abstract

Sex determination in animals is amazingly plastic. Vertebrates display contrasting strategies ranging from complete genetic control of sex (genotypic sex determination) to environmentally determined sex (for example, temperature-dependent sex determination)1. Phylogenetic analyses suggest frequent evolutionary transitions between genotypic and temperature-dependent sex determination in environmentally sensitive lineages, including reptiles2. These transitions are thought to involve a genotypic system becoming sensitive to temperature, with sex determined by gene–environment interactions3. Most mechanistic models of transitions invoke a role for sex reversal3,4,5. Sex reversal has not yet been demonstrated in nature for any amniote, although it occurs in fish6 and rarely in amphibians7,8. Here we make the first report of reptile sex reversal in the wild, in the Australian bearded dragon (Pogona vitticeps), and use sex-reversed animals to experimentally induce a rapid transition from genotypic to temperature-dependent sex determination. Controlled mating of normal males to sex-reversed females produces viable and fertile offspring whose phenotypic sex is determined solely by temperature (temperature-dependent sex determination). The W sex chromosome is eliminated from this lineage in the first generation. The instantaneous creation of a lineage of ZZ temperature-sensitive animals reveals a novel, climate-induced pathway for the rapid transition between genetic and temperature-dependent sex determination, and adds to concern about adaptation to rapid global climate change.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Geographical distribution of sex reversal in wild populations of P. vitticeps.
Figure 2: Offspring sex ratio as a function of egg incubation temperature in P. vitticeps.
Figure 3: Rate of sex reversal as a function of egg incubation temperature in P. vitticeps.

Similar content being viewed by others

Accession codes

Primary accessions

GenBank/EMBL/DDBJ

Data deposits

The W chromosome sequence has been deposited in GenBank under accession number KM508988.

References

  1. Sarre, S. D., Georges, A. & Quinn, A. The ends of a continuum: genetic and temperature-dependent sex determination in reptiles. Bioessays 26, 639–645 (2004)

    Article  PubMed  Google Scholar 

  2. Sarre, S. D., Ezaz, T. & Georges, A. Transitions between sex-determining systems in reptiles and amphibians. Annu. Rev. Genom. Hum. Genet. 12, 391–406 (2011)

    Article  CAS  Google Scholar 

  3. Bull, J. J. Evolution of environmental sex determination from genotypic sex determination. Heredity 47, 173–184 (1981)

    Article  Google Scholar 

  4. Quinn, A. E., Sarre, S. D., Ezaz, T., Graves, J. A. M. & Georges, A. Evolutionary transitions between mechanisms of sex determination in vertebrates. Biol. Lett. 7, 443–448 (2011)

    Article  PubMed  PubMed Central  Google Scholar 

  5. Schwanz, L. E., Ezaz, T., Gruber, B. & Georges, A. Novel evolutionary pathways of sex-determining mechanisms. J. Evol. Biol. 26, 2544–2557 (2013)

    Article  CAS  PubMed  Google Scholar 

  6. Chan, S. T. H. & Yeung, W. S. B. Sex control and sex reversal in fish under natural conditions. Fish Physiol. 9, 171–222 (1983)

    Article  Google Scholar 

  7. Alho, J. S., Matsuba, C. & Merila, J. Sex reversal and primary sex ratios in the common frog (Rana temporaria). Mol. Ecol. 19, 1763–1773 (2010)

    Article  PubMed  Google Scholar 

  8. Miura, I. Sex chromosome differentiation in the Japanese brown frog, Rana japonica. I. Sex-related heteromorphism of the distribution pattern of constitutive heterochromatin in chromosome no. 4 of the Wakuya population. Zool. Sci. 11, 797–806 (1994)

    Google Scholar 

  9. Bachtrog, D. et al. Sex determination: why so many ways of doing it? PLoS Biol. 12, e1001899 (2014)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Shine, R., Elphick, M. J. & Donnellan, S. Co-occurrence of multiple, supposedly incompatible modes of sex determination in a lizard population. Ecol. Lett. 5, 486–489 (2002)

    Article  Google Scholar 

  11. Radder, R. S., Quinn, A. E., Georges, A., Sarre, S. D. & Shine, R. Genetic evidence for co-occurrence of chromosomal and thermal sex-determining systems in a lizard. Biol. Lett. 4, 176–178 (2008)

    Article  CAS  PubMed  Google Scholar 

  12. Quinn, A. E. et al. Temperature sex reversal implies sex gene dosage in a reptile. Science 316, 411 (2007)

    Article  ADS  CAS  PubMed  Google Scholar 

  13. Mork, L., Czerwinski, M. & Capel, B. Predetermination of sexual fate in a turtle with temperature-dependent sex determination. Dev. Biol. 386, 264–271 (2014)

    Article  CAS  PubMed  Google Scholar 

  14. Wang, C. et al. Identification of sex chromosomes by means of comparative genomic hybridization in a lizard, Eremias multiocellata. Zool. Sci. 32, 151–156 (2015)

    Article  Google Scholar 

  15. Ezaz, T. et al. The dragon lizard Pogona vitticeps has ZZ/ZW micro-sex chromosomes. Chromosome Res. 13, 763–776 (2005)

    Article  CAS  PubMed  Google Scholar 

  16. Quinn, A. E., Ezaz, T., Sarre, S. D., Graves, J. A. M. & Georges, A. Extension, single-locus conversion and physical mapping of sex chromosome sequences identify the Z microchromosome and pseudo-autosomal region in a dragon lizard, Pogona vitticeps. Heredity 104, 410–417 (2010)

    Article  CAS  PubMed  Google Scholar 

  17. Ezaz, T. et al. Sequence and gene content of a large fragment of a lizard sex chromosome and evaluation of candidate sex differentiating gene R-spondin 1. BMC Genom. 14, 899 (2013)

    Article  CAS  Google Scholar 

  18. Booth, W. et al. Facultative parthenogenesis discovered in wild vertebrates. Biol. Lett. 8, 983–985 (2012)

    Article  PubMed  PubMed Central  Google Scholar 

  19. Booth, W., Johnson, D. H., Moore, S., Schal, C. & Vargo, E. L. Evidence for viable, non-clonal but fatherless boa constrictors. Biol. Lett. 7, 253–256 (2011)

    Article  PubMed  Google Scholar 

  20. Watts, P. C. et al. Parthenogenesis in Komodo dragons. Nature 444, 1021–1022 (2006)

    Article  ADS  CAS  PubMed  Google Scholar 

  21. Charnov, E. L. & Bull, J. When is sex environmentally determined? Nature 266, 828–830 (1977)

    Article  ADS  CAS  PubMed  Google Scholar 

  22. Warner, D. A. & Shine, R. The adaptive significance of temperature-dependent sex determination in a reptile. Nature 451, 566–568 (2008)

    Article  ADS  CAS  PubMed  Google Scholar 

  23. Warner, D. A. & Shine, R. The adaptive significance of temperature-dependent sex determination: experimental tests with a short lived lizard. Evolution 59, 2209–2221 (2005)

    Article  PubMed  Google Scholar 

  24. McGaugh, S. E. & Janzen, F. J. Effective heritability of targets of sex-ratio selection under environmental sex determination. J. Evol. Biol. 24, 784–794 (2011)

    Article  CAS  PubMed  Google Scholar 

  25. Saunders, P. A. et al. XY females do better than the XX in the african pygmy mouse, Mus minutoides. Evolution 68, 2119–2127 (2014)

    Article  PubMed  Google Scholar 

  26. Bull, J. J. Evolution of Sex Determining Mechanisms (Benjamin-Cummings, 1983)

    Google Scholar 

  27. Sinervo, B. et al. Erosion of lizard diversity by climate change and altered thermal niches. Science 328, 894–899 (2010)

    Article  ADS  CAS  PubMed  Google Scholar 

  28. Hoffmann, A. A. & Sgro, C. M. Climate change and evolutionary adaptation. Nature 470, 479–485 (2011)

    Article  ADS  CAS  PubMed  Google Scholar 

  29. Boyle, M., Hone, J., Schwanz, L. E. & Georges, A. Under what conditions do climate-driven sex ratios enhance versus diminish population persistence? Ecol. Evol. 4, 4522–4533 (2014)

    Article  PubMed  PubMed Central  Google Scholar 

  30. Mrosovsky, N. & Pieau, C. Transitional range of temperature, pivotal temperatures and thermosensitive stages for sex determination in reptiles. Amphib.-Reptil. 12, 169–179 (1991)

    Article  Google Scholar 

  31. Harlow, P. S. A harmless technique for sexing hatchling lizards. Herpetol. Rev. 27, 71–72 (1996)

    Google Scholar 

  32. Brown, D. Hemipenal transillumination as a sexing technique in varanids. Biawak 3, 26–29 (2009)

    Google Scholar 

  33. Ezaz, T. et al. A simple non-invasive protocol to establish primary cell lines from tail and toe explants for cytogenetic studies in Australian dragon lizards (Squamata: Agamidae). Cytotechnology 58, 135–139 (2008)

    Article  PubMed  Google Scholar 

  34. Young, M. J., O’Meally, D., Sarre, S. D., Georges, A. & Ezaz, T. Molecular cytogenetic map of the central bearded dragon, Pogona vitticeps (Squamata: Agamidae). Chromosome Res. 21, 361–374 (2013)

    Article  CAS  PubMed  Google Scholar 

  35. Sumner, A. T. A simple technique for demonstrating centromeric heterochromatin. Exp. Cell Res. 75, 304–306 (1972)

    Article  CAS  PubMed  Google Scholar 

  36. Matsubara, K. et al. Highly differentiated ZW sex microchromosomes in the Australian Varanus species evolved through rapid amplification of repetitive sequences. PLoS ONE 9, e95226 (2014)

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  37. Cioffi, M. B., Martins, C., Vicari, M. R., Rebordinos, L. & Bertollo, L. A. Differentiation of the XY sex chromosomes in the fish Hoplias malabaricus (Characiformes, Erythrinidae): unusual accumulation of repetitive sequences on the X chromosome. Sex Dev. 4, 176–185 (2010)

    Article  CAS  PubMed  Google Scholar 

  38. Courtois, B. et al. Genome-wide association mapping of root traits in a japonica rice panel. PLoS ONE 8, e78037 (2013)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  39. Cruz, V. M., Kilian, A. & Dierig, D. A. Development of DArT marker platforms and genetic diversity assessment of the U.S. collection of the new oilseed crop lesquerella and related species. PLoS ONE 8, e64062 (2013)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kilian, A. et al. Diversity arrays technology: a generic genome profiling technology on open platforms. Methods Mol. Biol. 888, 67–89 (2012)

    Article  PubMed  Google Scholar 

  41. Raman, H. et al. Genome-wide delineation of natural variation for pod shatter resistance in Brassica napus. PLoS ONE 9, e101673 (2014)

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

We thank the following persons and institutions: W. Ruscoe and J. Richardson (animal husbandry); A. Quinn, M. Young and J. Richardson (field collections); A. Kilian and Diversity Arrays Technology (SNP genotyping); A. Livernois (sequencing assistance); B. Gruber and N. Garlapati (geographic information system); A. T. Adamack (modelling advice); A. Dobos and P. E. Geertz (graphic design); J. Deakin, R. Thompson and the Kioloa Science Writers Workshop (revisions of the manuscript). We particularly thank reviewer J. J. Bull for suggesting the modelling approach in Extended Data Fig. 4. Funding was from Australian Research Council Discovery Grant DP110104377 to A.G. and T.E. This research was conducted under appropriate approvals from the Victorian, New South Wales and Queensland authorities, and with approvals from the Animal Ethics Committee of the University of Canberra.

Author information

Authors and Affiliations

Authors

Contributions

C.E.H. and A.G. designed the study. C.E.H. conducted breeding experiments, egg incubations, parentage SNP analysis and prepared figures. D.O'M. collected the animals from the field. C.E.H. and X.Z. conducted the molecular sex testing. B.A. and K.M. undertook the cytogenetic analysis and prepared extended data figures, under the supervision of T.E. A.G. and C.E.H. undertook the statistical analyses and A.G. conducted the modelling of ZW genotype frequency with temperature. All authors contributed to writing the manuscript.

Corresponding authors

Correspondence to Clare E. Holleley or Arthur Georges.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Extended data figures and tables

Extended Data Figure 1 C-banded P. vitticeps chromosomes.

a, Mitotic metaphase chromosomes of a ZW control female individual. Arrowhead indicates the presence of a W chromosome identified by dense black staining of a single microchromosome. b, Mitotic metaphase chromosomes of a female putative ZZ sex-reversed individual. No evidence of a W chromosome was detected. c, Mitotic metaphase chromosomes of a control ZZ male individual. No evidence of a W chromosome was detected. Scale bar, 10 μm.

Extended Data Figure 2 Comparative genomic hybridization in P. vitticeps.

Genomic DNA was labelled by nick translation incorporating SpectrumGreen-dUTP for males and SpectrumOrange-dUTP for females. a, Mitotic metaphase chromosomes of a ZW control female individual. Arrowhead indicates the presence of a single W microchromosome identified by the enriched orange fluorescence of female specific genomic DNA labelled with SpectrumOrange-dUTP. b, Mitotic metaphase chromosomes of a female putative ZZ sex-reversed individual. No evidence of a W chromosome was detected. c, Mitotic metaphase chromosomes of a control ZZ male individual. No evidence of a W chromosome was detected. df, DAPI staining of the same metaphases, control ZW female, sex-reversed ZZ female and control ZZ male, respectively. Scale bar, 10 μm.

Extended Data Figure 3 Physical mapping of a W-chromosome-linked microsatellite motif in P. vitticeps.

a, Mitotic metaphase chromosomes of a ZW control female individual. Arrowhead indicates the presence of a W chromosome identified by a strong hybridization of (AAGG)8-Cy3 florescence (orange) on a single microchromosome. b, Mitotic metaphase chromosomes of a female putative ZZ sex-reversed individual. No evidence of a W chromosome was detected. c, Mitotic metaphase chromosomes of a control ZZ male individual. No evidence of a W chromosome was detected. df, DAPI staining of the same metaphases, control ZW female, sex-reversed ZZ female and control ZZ male, respectively. Scale bar, 10 μm.

Extended Data Figure 4 Modelling the decline of the ZW genotype resulting from frequency-dependent selection.

Frequency of the ZW genotype declines precipitously with increasing incubation temperature. Our wild population (shown in red, 14.3% sex reversal) resides on the precipice between GSD and TSD and requires only a small change in environmental temperature to precipitate loss of the W chromosome.

Related audio

Supplementary information

Supplementary Information

This file contains Supplementary Tables 1-4. (PDF 169 kb)

Supplementary data

This file contains the source data used to make Supplementary Table 1. (XLSX 1099 kb)

PowerPoint slides

Source data

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Holleley, C., O'Meally, D., Sarre, S. et al. Sex reversal triggers the rapid transition from genetic to temperature-dependent sex. Nature 523, 79–82 (2015). https://doi.org/10.1038/nature14574

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature14574

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing