Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Turbulent heating in galaxy clusters brightest in X-rays

Abstract

The hot (107 to 108 kelvin), X-ray-emitting intracluster medium (ICM) is the dominant baryonic constituent of clusters of galaxies. In the cores of many clusters, radiative energy losses from the ICM occur on timescales much shorter than the age of the system1,2,3. Unchecked, this cooling would lead to massive accumulations of cold gas and vigorous star formation4, in contradiction to observations5. Various sources of energy capable of compensating for these cooling losses have been proposed, the most promising being heating by the supermassive black holes in the central galaxies, through inflation of bubbles of relativistic plasma6,7,8,9. Regardless of the original source of energy, the question of how this energy is transferred to the ICM remains open. Here we present a plausible solution to this question based on deep X-ray data and a new data analysis method that enable us to evaluate directly the ICM heating rate from the dissipation of turbulence. We find that turbulent heating is sufficient to offset radiative cooling and indeed appears to balance it locally at each radius—it may therefore be the key element in resolving the gas cooling problem in cluster cores and, more universally, in the atmospheres of X-ray-emitting, gas-rich systems on scales from galaxy clusters to groups and elliptical galaxies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: X-ray image of the core of the Perseus cluster.
Figure 2: Measured amplitude of the one-component velocity V1,k of gas motions versus wavenumber k.
Figure 3: Turbulent heating (Qheat) versus gas cooling (Qcool) rates in the Perseus and Virgo cores.

Similar content being viewed by others

References

  1. Lea, S. M. The dynamics of the intergalactic medium in the vicinity of clusters of galaxies. Astrophys. J. 203, 569–580 (1976)

    Article  ADS  Google Scholar 

  2. Cowie, L. L. & Binney, J. Radiative regulation of gas flow within clusters of galaxies: a model for cluster X-ray sources. Astrophys. J. 215, 723–732 (1977)

    Article  CAS  ADS  Google Scholar 

  3. Fabian, A. C. & Nulsen, P. E. J. Subsonic accretion of cooling gas in clusters of galaxies. Mon. Not. R. Astron. Soc. 180, 479–484 (1977)

    Article  ADS  Google Scholar 

  4. Fabian, A. C. Cooling flows in clusters of galaxies. Annu. Rev. Astron. Astrophys. 32, 277–318 (1994)

    Article  ADS  Google Scholar 

  5. Peterson, J. R. & Fabian, A. C. X-ray spectroscopy of cooling clusters. Phys. Rep. 427, 1–39 (2006)

    Article  ADS  Google Scholar 

  6. Churazov, E., Forman, W., Jones, C. & Böhringer, H. Asymmetric, arc minute scale structures around NGC 1275. Astron. Astrophys. 256, 788–794 (2000)

    ADS  Google Scholar 

  7. McNamara, B. R. & Nulsen, P. E. J. Heating hot atmospheres with active galactic nuclei. Annu. Rev. Astron. Astrophys. 45, 117–175 (2007)

    Article  ADS  Google Scholar 

  8. Fabian, A. C. Observational evidence of active galactic nuclei feedback. Annu. Rev. Astron. Astrophys. 50, 455–489 (2012)

    Article  CAS  ADS  Google Scholar 

  9. Bîrzan, L. et al. The duty cycle of radio-mode feedback in complete samples of clusters. Mon. Not. R. Astron. Soc. 427, 3468–3488 (2012)

    Article  ADS  Google Scholar 

  10. Churazov, E., Brüggen, M., Kaiser, C. R., Böhringer, H. & Forman, W. Evolution of buoyant bubbles in M87. Astrophys. J. 554, 261–273 (2001)

    Article  ADS  Google Scholar 

  11. Omma, H., Binney, J., Bryan, G. & Slyz, A. Heating cooling flows with jets. Mon. Not. R. Astron. Soc. 348, 1105–1119 (2004)

    Article  ADS  Google Scholar 

  12. Hillel, S. & Soker, N. Heating cold clumps by jet-inflated bubbles in cooling flow clusters. Preprint at http://arxiv.org/abs/1403.5137

  13. Zhuravleva, I. et al. The relation between gas density and velocity power spectra in galaxy clusters: qualitative treatment and cosmological simulations. Astrophys. J. 788, L13–L18 (2014)

    Article  ADS  CAS  Google Scholar 

  14. Gaspari, M. et al. The relation between gas density and velocity power spectra in galaxy clusters: high-resolution hydrodynamic simulations and the role of conduction. Astron. Astrophys. 569, A67–A82 (2014)

    Article  Google Scholar 

  15. Fabian, A. C. et al. A very deep Chandra observation of the Perseus cluster: shocks, ripples and conduction. Mon. Not. R. Astron. Soc. 366, 417–428 (2006)

    Article  CAS  ADS  Google Scholar 

  16. Sternberg, A. & Soker, N. Sound waves excitation by jet-inflated bubbles in clusters of galaxies. Mon. Not. R. Astron. Soc. 395, 228–233 (2009)

    Article  ADS  Google Scholar 

  17. Brethouwer, G., Billant, P., Lindborg, E. & Chomaz, J.-M. Scaling analysis and simulation of strongly stratified turbulent flows. J. Fluid Mech. 585, 343–368 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Arévalo, P., Churazov, E., Zhuravleva, I., Hernández-Monteagudo, C. & Revnivtsev, M. A Mexican hat with holes: calculating low-resolution power spectra from data with gaps. Mon. Not. R. Astron. Soc. 426, 1793–1807 (2012)

    Article  ADS  Google Scholar 

  19. Dennis, T. J. & Chandran, B. D. G. Turbulent heating of galaxy-cluster plasmas. Astrophys. J. 622, 205–216 (2005)

    Article  CAS  ADS  Google Scholar 

  20. Kolmogorov, A. N. The local structure of turbulence in incompressible viscous fluid for very large Reynolds’ numbers. Dokl. Akad. Nauk SSSR 30, 301–305 (1941)

    ADS  MathSciNet  Google Scholar 

  21. Sreenivasan, K. R. On the universality of the Kolmogorov constant. Phys. Fluids 7, 2778–2784 (1995)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Kaneda, Y., Ishihara, T., Yokokawa, M., Itakura, K. & Uno, A. Energy dissipation rate and energy spectrum in high resolution direct numerical simulations of turbulence in a periodic box. Phys. Fluids 15, L21–L24 (2003)

    Article  CAS  ADS  MATH  Google Scholar 

  23. Beresnyak, A. Spectral slope and Kolmogorov constant of MHD turbulence. Phys. Rev. Lett. 106, 075001 (2011)

    Article  CAS  ADS  PubMed  Google Scholar 

  24. Schekochihin, A. A. et al. Astrophysical gyrokinetics: kinetic and fluid turbulent cascades in magnetized weakly collisional plasmas. Astrophys. J. Suppl. Ser. 182, 310–377 (2009)

    Article  ADS  Google Scholar 

  25. Churazov, E. et al. X-ray surface brightness and gas density fluctuations in the Coma cluster. Mon. Not. R. Astron. Soc. 421, 1123–1135 (2012)

    Article  ADS  Google Scholar 

  26. Sutherland, R. S. & Dopita, M. A. Cooling functions for low-density astrophysical plasmas. Astrophys. J. Suppl. Ser. 88, 253–327 (1993)

    Article  CAS  ADS  Google Scholar 

  27. Markevitch, M. & Vikhlinin, A. Shocks and cold fronts in galaxy clusters. Phys. Rep. 443, 1–53 (2007)

    Article  ADS  Google Scholar 

  28. Subramanian, K., Shukurov, A. & Haugen, N. E. L. Evolving turbulence and magnetic fields in galaxy clusters. Mon. Not. R. Astron. Soc. 366, 1437–1454 (2006)

    Article  CAS  ADS  Google Scholar 

  29. Balbus, S. A. & Soker, N. Resonant excitation of internal gravity waves in cluster cooling flows. Astrophys. J. 357, 353–366 (1990)

    Article  ADS  Google Scholar 

  30. Vikhlinin, A. et al. Chandra temperature profiles for a sample of nearby relaxed galaxy clusters. Astrophys. J. 628, 655–672 (2005)

    Article  CAS  ADS  Google Scholar 

  31. Churazov, E., Forman, W., Jones, C. & Böhringer, H. XMM-Newton observations of the Perseus Cluster. I. The temperature and surface brightness structure. Astrophys. J. 590, 225–237 (2003)

    Article  ADS  Google Scholar 

  32. Foster, A. R., Ji, L., Smith, R. K. & Brickhouse, N. S. Updated atomic data and calculations for X-ray spectroscopy. Astrophys. J. 756, 128–139 (2012)

    Article  ADS  CAS  Google Scholar 

  33. Smith, R. K., Brickhouse, N. S., Liedahl, D. A. & Raymond, J. C. Collisional plasma models with APEC/APED: emission-line diagnostics of hydrogen-like and helium-like Ions. Astrophys. J. 556, L91–L95 (2001)

    Article  CAS  ADS  Google Scholar 

  34. Anders, E. & Grevesse, N. Abundances of the elements: meteoritic and solar. Geochim. Cosmochim. Acta 53, 197–214 (1989)

    Article  CAS  ADS  Google Scholar 

  35. Churazov, E., Sunyaev, R., Forman, W. & Böhringer, H. Cooling flows as a calorimeter of active galactic nucleus mechanical power. Mon. Not. R. Astron. Soc. 332, 729–734 (2002)

    Article  CAS  ADS  Google Scholar 

  36. McCourt, M., Sharma, P., Quataert, E. & Parrish, I. J. Thermal instability in gravitationally stratified plasmas: implications for multiphase structure in clusters and galaxy haloes. Mon. Not. R. Astron. Soc. 419, 3319–3337 (2012)

    Article  ADS  Google Scholar 

  37. Ossenkopf, V., Krips, M. & Stutzki, J. Structure analysis of interstellar clouds. I. Improving the Δ-variance method. Astron. Astrophys. 485, 917–929 (2008)

    Article  ADS  Google Scholar 

  38. Sanders, J. S. & Fabian, A. C. Deep Chandra and XMM-Newton X-ray observations of AWM 7 - I. Investigating X-ray surface brightness fluctuations. Mon. Not. R. Astron. Soc. 421, 726–742 (2012)

    ADS  Google Scholar 

  39. Ozmidov, R. V. Length scales and dimensionless numbers in a stratified ocean. Oceanology 32, 259–262 (1992)

    Google Scholar 

  40. Braginskii, S. I. Transport processes in a plasma. Rev. Plasma Phys. 1, 205–310 (1965)

    ADS  Google Scholar 

  41. Zakamska, N. L. & Narayan, R. Models of galaxy clusters with thermal conduction. Astrophys. J. 582, 162–169 (2003)

    Article  ADS  Google Scholar 

  42. Cho, J. et al. Thermal conduction in magnetized turbulent gas. Astrophys. J. 589, L77–L80 (2003)

    Article  ADS  Google Scholar 

  43. Norman, M. L. & Bryan, G. L. in The Radio Galaxy Messier 87 (eds Röser, H.-J. & Meisenheimer, K. ) 106–115 (Springer, 1999)

    Book  Google Scholar 

  44. Lufkin, E. A., Balbus, S. A. & Hawley, J. F. Nonlinear evolution of internal gravity waves in cluster cooling flows. Astrophys. J. 446, 529–540 (1995)

    Article  ADS  Google Scholar 

  45. Ruszkowski, M. & Oh, S. P. Galaxy motions, turbulence and conduction in clusters of galaxies. Mon. Not. R. Astron. Soc. 414, 1493–1507 (2011)

    Article  ADS  Google Scholar 

  46. Randall, S. W. et al. Shocks and cavities from multiple outbursts in the galaxy group NGC 5813: a window to active galactic nucleus feedback. Astrophys. J. 726, 86–104 (2011)

    Article  ADS  CAS  Google Scholar 

  47. Fujita, Y., Matsumoto, T. & Wada, K. Strong turbulence in the cool cores of galaxy clusters: can tsunamis solve the cooling flow problem? Astrophys. J. 612, L9–L12 (2004)

    Article  CAS  ADS  Google Scholar 

  48. Banerjee, N. & Sharma, P. Turbulence and cooling in galaxy cluster cores. Mon. Not. R. Astron. Soc. 443, 687–697 (2014)

    Article  ADS  Google Scholar 

  49. Kim, W.-T. & Narayan, R. Turbulent mixing in clusters of galaxies. Astrophys. J. 596, L139–L142 (2003)

    Article  ADS  Google Scholar 

  50. Chandran, B. D. & Dennis, T. J. Convective stability of galaxy-cluster plasmas. Astrophys. J. 642, 140–151 (2006)

    Article  CAS  ADS  Google Scholar 

  51. Pfrommer, C. Toward a comprehensive model for feedback by active galactic nuclei: new insights from M87 observations by LOFAR, Fermi, and H.E.S.S. Astrophys. J. 779, 10–28 (2013)

    Article  ADS  CAS  Google Scholar 

  52. Ciotti, L. & Ostriker, J. P. Cooling flows and quasars. II. Detailed models of feedback-modulated accretion flows. Astrophys. J. 551, 131–152 (2001)

    Article  CAS  ADS  Google Scholar 

  53. Nulsen, P. E. J. & Fabian, A. C. Fuelling quasars with hot gas. Mon. Not. R. Astron. Soc. 311, 346–356 (2000)

    Article  CAS  ADS  Google Scholar 

  54. Werner, N. et al. XMM-Newton high-resolution spectroscopy reveals the chemical evolution of M87. Astron. Astrophys. 459, 353–360 (2006)

    Article  CAS  ADS  Google Scholar 

Download references

Acknowledgements

Support for this work was provided by the NASA through Chandra award number AR4-15013X issued by the Chandra X-ray Observatory Center, which is operated by the Smithsonian Astrophysical Observatory for and on behalf of the NASA under contract NAS8-03060. S.W.A. acknowledges support from the US Department of Energy under contract number DE-AC02-76SF00515. I.Z. and N.W. are partially supported from Suzaku grants NNX12AE05G and NNX13AI49G. P.A. acknowledges financial support from Fondecyt 1140304 and European Commission’s Framework Programme 7, through the Marie Curie International Research Staff Exchange Scheme LACEGAL (PIRSES-GA -2010-2692 64). E.C. and R.S. are partially supported by grant no. 14-22-00271 from the Russian Scientific Foundation.

Author information

Authors and Affiliations

Authors

Contributions

I.Z.: data analysis, interpretation, manuscript preparation; E.C.: data analysis, interpretation, manuscript preparation; A.A.S.: interpretation, discussions, manuscript preparation; A.C.F.: principal investigator of the Perseus cluster observations, interpretation, manuscript review; S.W.A.: interpretation, discussions, manuscript review; W.R.F.: principal investigator of the M87 observations, interpretation, manuscript review; P.A., J.S.S., A.S., R.S., A.V., N.W.: interpretation, discussions and manuscript review.

Corresponding author

Correspondence to I. Zhuravleva.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Extended data figures and tables

Extended Data Figure 1 Thermodynamic properties of the Perseus and Virgo clusters.

Radial profiles of the deprojected electron number density, the electron temperature, the cooling (tcool) and free-fall (tff) times, and the sound speed. Red points: data with 1σ error bars; black curves: data approximations using smooth functions. The increased temperature scatter in the central few kiloparsecs is associated with the presence of multi-temperature plasma in cool cores. A two-temperature fit of high-resolution XMM-Newton RGS spectra of the core of Virgo suggests an ambient temperature there of 1.6 keV (ref. 54). The smooth-function approximation we have chosen therefore approaches this value.

Extended Data Figure 2 X-ray image of the core of the Virgo cluster.

a, X-ray surface brightness in units of counts per second per pixel in the 0.5–3.5 keV energy band. b, Relative surface brightness fluctuations. Both images are smoothed with a 3′′ Gaussian. Black circles: excised point sources and central jet. White circles indicate ‘arm-like’ structures associated with the central AGN’s activity, which have also been excised. We adopt 16.9 Mpc as the distance to the cluster, implying that an angular size of 1′ corresponds to a length scale of 4.91 kpc.

Extended Data Figure 3 Set of the radial annuli used in the analysis of the Perseus and Virgo clusters.

The same as Fig. 1b and Extended Data Fig. 1b with white circles indicating the annuli used. The width of each annulus is 1.5′ ≈ 31 kpc in Perseus (a) and 2′ ≈ 9.8 kpc in Virgo (b). The outermost circles are 10.5′ ≈ 218 kpc and 8′ ≈ 39 kpc in Perseus and Virgo, respectively.

Extended Data Figure 4 Turbulent heating per unit density versus radiative cooling per unit density, and the Ozmidov scale in the Perseus and Virgo clusters.

a, The same as Fig. 3, but with the turbulent heating and cooling rates divided by the mass density of gas in each annulus. b, The same as Fig. 2 with the Ozmidov scale lO = 1/kO = N3/2ε1/2 shown for each annulus (vertical black lines), estimated using ε = Qcool/ρ0 (assuming that Qturb = Qcool).

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhuravleva, I., Churazov, E., Schekochihin, A. et al. Turbulent heating in galaxy clusters brightest in X-rays. Nature 515, 85–87 (2014). https://doi.org/10.1038/nature13830

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature13830

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing