Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

An ultra-lightweight design for imperceptible plastic electronics

Abstract

Electronic devices have advanced from their heavy, bulky origins to become smart, mobile appliances. Nevertheless, they remain rigid, which precludes their intimate integration into everyday life. Flexible, textile and stretchable electronics are emerging research areas and may yield mainstream technologies1,2,3. Rollable and unbreakable backplanes with amorphous silicon field-effect transistors on steel substrates only 3 μm thick have been demonstrated4. On polymer substrates, bending radii of 0.1 mm have been achieved in flexible electronic devices5,6,7. Concurrently, the need for compliant electronics that can not only be flexed but also conform to three-dimensional shapes has emerged3. Approaches include the transfer of ultrathin polyimide layers encapsulating silicon CMOS circuits onto pre-stretched elastomers8, the use of conductive elastomers integrated with organic field-effect transistors (OFETs) on polyimide islands9, and fabrication of OFETs and gold interconnects on elastic substrates10 to realize pressure, temperature and optical sensors11,12,13,14. Here we present a platform that makes electronics both virtually unbreakable4 and imperceptible. Fabricated directly on ultrathin (1 μm) polymer foils, our electronic circuits are light (3 g m−2) and ultraflexible and conform to their ambient, dynamic environment. Organic transistors with an ultra-dense oxide gate dielectric a few nanometres thick formed at room temperature enable sophisticated large-area electronic foils with unprecedented mechanical and environmental stability: they withstand repeated bending to radii of 5 μm and less, can be crumpled like paper, accommodate stretching up to 230% on prestrained elastomers, and can be operated at high temperatures and in aqueous environments. Because manufacturing costs of organic electronics are potentially low, imperceptible electronic foils may be as common in the future as plastic wrap is today. Applications include matrix-addressed tactile sensor foils for health care and monitoring, thin-film heaters, temperature and infrared sensors, displays15, and organic solar cells16.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Imperceptible electronic foil.
Figure 2: Thin-film infrared sensor and heat management.
Figure 3: Thin-film transistors on 1.2-μm PEN foils.
Figure 4: Active-matrix tactile sensing foil.
Figure 5: Stretch-compatible ultraflexible transistors.

Similar content being viewed by others

References

  1. Wong W. S., Salleo A., eds. Flexible Electronics: Materials and Applications (Springer, 2010)

  2. Cherenack, K. & van Pieterson, L. Smart textiles: challenges and opportunities. J. Appl. Phys. 112, 091301 (2012)

    Article  ADS  Google Scholar 

  3. Wagner, S. & Bauer, S. Materials for stretchable electronics. MRS Bull. 37 (special issue), 207–213 (2012)

    Article  Google Scholar 

  4. Ma, E. Y. & Wagner, S. Amorphous silicon transistors on ultrathin steel foil substrates. Appl. Phys. Lett. 74, 2661–2662 (1999)

    Article  CAS  ADS  Google Scholar 

  5. Sekitani, T. et al. Ultraflexible organic field-effect transistors embedded at a neutral strain position. Appl. Phys. Lett. 87, 173502 (2005)

    Article  ADS  Google Scholar 

  6. Sekitani, T., Zschieschang, U., Klauk, H. & Someya, T. Flexible organic transistors and circuits with extreme bending stability. Nature Mater. 9, 1015–1022 (2010)

    Article  CAS  ADS  Google Scholar 

  7. Shahrjerdi, D. & Bedell, S. W. Extremely flexible nanoscale ultrathin body silicon integrated circuits on plastic. Nano Lett. 13, 315–320 (2013)

    Article  CAS  ADS  Google Scholar 

  8. Kim, D. H. et al. Stretchable and foldable silicon integrated circuits. Science 320, 507–511 (2008)

    Article  CAS  ADS  Google Scholar 

  9. Sekitani, T. et al. A rubberlike stretchable active matrix using elastic conductors. Science 321, 1468–1472 (2008)

    Article  CAS  ADS  Google Scholar 

  10. Graz, I. M., Cotton, D. P. J., Robinson, A. & Lacour, S. P. Silicone substrate with in situ strain relief for stretchable thin-film transistors. Appl. Phys. Lett. 98, 124101 (2011)

    Article  ADS  Google Scholar 

  11. Someya, T. et al. Conformable, flexible, large-area networks of pressure and thermal sensors with organic transistor active matrixes. Proc. Natl Acad. Sci. USA 102, 12321–12325 (2005)

    Article  CAS  ADS  Google Scholar 

  12. Kim, D. H. et al. Epidermal electronics. Science 333, 838–843 (2011)

    Article  CAS  ADS  Google Scholar 

  13. Sokolov, A. N., Tee, B. C. K., Bettinger, C. J., Tok, J. B. H. & Bao, Z. Chemical and engineering approaches to enable organic field-effect transistors for electronic skin applications. Acc. Chem. Res. 45, 361–371 (2012)

    Article  CAS  Google Scholar 

  14. Lipomi, D. J. et al. Skin-like pressure and strain sensors based on transparent elastic films of carbon nanotubes. Nature Nanotechnol. 6, 788–792 (2011)

    Article  CAS  ADS  Google Scholar 

  15. White, M. S. et al. Ultrathin, highly flexible and stretchable PLEDs. Nature Photonics (in the press)

  16. Kaltenbrunner, M. et al. Ultrathin and lightweight organic solar cells with high flexibility. Nature Commun. 3, 770–777 (2012)

    Article  ADS  Google Scholar 

  17. Mardare, A. I., Kaltenbrunner, M., Sariciftci, N. S., Bauer, S. & Hassel, A. W. Ultra-thin anodic alumina capacitor films for plastic electronics. Phys. Status Solidi, A Appl. Res. 209, 813–818 (2012)

    Article  CAS  ADS  Google Scholar 

  18. Lohrengel, M. M. Thin anodic oxide layers on aluminum and other valve metals—high-field regime. Mater. Sci. Eng. Rep. 11, 243–294 (1993)

    Article  Google Scholar 

  19. Klauk, H., Zschieschang, U., Pflaum, J. & Halik, M. Ultralow-power organic complementary circuits. Nature 445, 745–748 (2007)

    Article  CAS  ADS  Google Scholar 

  20. Yamamoto, T. & Takimiya, K. Facile synthesis of highly pi-extended heteroarenes, dinaphtho[2,3-b:2′,3′-f]chalcogenopheno[3,2-b]chalcogenophenes, and their application to field-effect transistors. J. Am. Chem. Soc. 129, 2224–2225 (2007)

    Article  CAS  Google Scholar 

  21. de Almeida, L. A. L. et al. Modeling and performance of vanadium–oxide transition edge microbolometers. Appl. Phys. Lett. 85, 3605–3607 (2004)

    Article  CAS  ADS  Google Scholar 

  22. Wang, B., Lai, J., Li, H., Hu, H. & Chen, S. Nanostructured vanadium oxide thin film with high TCR at room temperature for microbolometer. Infrared Phys. Technol. 57C, 8–13 (2013)

    Article  ADS  Google Scholar 

  23. Oh, D.-W., Kim, S., Rogers, J. A., Cahill, D. G. & Sinha, S. Interfacial thermal conductance of transfer-printed metal films. Adv. Mater. 23, 5028–5033 (2011)

    Article  CAS  Google Scholar 

  24. Gonzalez, M. et al. in 11th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE 2010) (eds Ernst, L. J. et al.) 1–7 (IEEE, 2010)

  25. Tu, K. N. Recent advances on electromigration in very-large-scale-integration of interconnects. J. Appl. Phys. 94, 5451–5473 (2003)

    Article  CAS  ADS  Google Scholar 

  26. Zschieschang, U. et al. Flexible low-voltage organic thin-film transistors and circuits based on C10-DNTT. J. Mater. Chem. 22, 4273–4277 (2012)

    Article  CAS  Google Scholar 

  27. Khang, D., Jiang, H., Huang, Y. & Rogers, J. A stretchable form of single-crystal silicon for high-performance electronics on rubber substrates. Science 311, 208–212 (2006)

    Article  CAS  ADS  Google Scholar 

  28. Suo, Z., Ma, E., Gleskova, H. & Wagner, S. Mechanics of rollable and foldable film-on-foil electronics. Appl. Phys. Lett. 74, 1177–1179 (1999)

    Article  CAS  ADS  Google Scholar 

  29. Rogers, J. A., Someya, T. & Huang, Y. Materials and mechanics for stretchable electronics. Science 327, 1603–1607 (2010)

    Article  CAS  ADS  Google Scholar 

  30. Zang, J. et al. Multifunctionality and control of the crumpling and unfolding of large-area graphene. Nature Mater. 12, 1–5 (2013)

    Article  ADS  Google Scholar 

  31. Gärditz, C., Winnacker, A., Schindler, F. & Paetzold, R. Impact of Joule heating on the brightness homogeneity of organic light emitting devices. Appl. Phys. Lett. 90, 103506 (2007)

    Article  ADS  Google Scholar 

  32. Bauer, S. & Ploss, B. A method for the measurement of the thermal, dielectric, and pyroelectric properties of thin pyroelectric films and their applications for integrated heat sensors. J. Appl. Phys. 68, 6361–6367 (1990)

    Article  CAS  ADS  Google Scholar 

  33. Facchetti, A., Yoon, M. H. & Marks, T. J. Gate dielectrics for organic field-effect transistors: new opportunities for organic electronics. Adv. Mater. 17, 1705–1725 (2005)

    Article  CAS  Google Scholar 

  34. Yan, H. et al. A high-mobility electron-transporting polymer for printed transistors. Nature 457, 679–686 (2008)

    Article  ADS  Google Scholar 

  35. Usta, H., Facchetti, A. & Marks, T. J. Air-stable, solution-processable n-channel and ambipolar semiconductors for thin-film transistors based on the indenofluorenebis(dicyanovinylene) core. J. Am. Chem. Soc. 130, 8580–8581 (2008)

    Article  CAS  Google Scholar 

  36. Oh, J. H. et al. High-performance air-stable n-type organic transistors based on core-chlorinated naphthalene tetracarboxylic diimides. Adv. Funct. Mater. 20, 2148–2156 (2010)

    Article  CAS  Google Scholar 

  37. Jung, B. J., Lee, K., Sun, J., Andreou, A. G. & Katz, H. E. Air-operable, high-mobility organic transistors with semifluorinated side chains and unsubstituted naphthalenetetracarboxylic diimide cores: high mobility and environmental and bias stress stability from the perfluorooctylpropyl side chain. Adv. Funct. Mater. 20, 2930–2944 (2010)

    Article  CAS  Google Scholar 

  38. Zhang, X.-H., Potscavage, W. J., Choi, S. & Kippelen, B. Low-voltage flexible organic complementary inverters with high noise margin and high dc gain. Appl. Phys. Lett. 94, 043312 (2009)

    Article  ADS  Google Scholar 

  39. Geib, S. et al. Core-brominated tetraazaperopyrenes as n-channel semiconductors for organic complementary circuits on flexible substrates. Adv. Funct. Mater.. http://dx.doi.org/10.1002/adfm.201203600 (27 May 2013)

  40. Baeg, K.-J. et al. High speeds complementary integrated circuits fabricated with all-printed polymeric semiconductors. J. Polym. Sci. B 49, 62–67 (2010)

    Article  Google Scholar 

Download references

Acknowledgements

We thank I. Abfalter for discussions. This work was supported by the JST Someya Bio-Harmonized ERATO grant and the ERC Advanced Investigators Grant ‘Soft-Map’ of S. Bauer. M.K. acknowledges financial support from the Wilhelm Macke Foundation and the mobility programme of the Johannes Kepler University Linz (KIP).

Author information

Authors and Affiliations

Authors

Contributions

M.K. and T.Se. designed, fabricated and characterized the transistors and active matrices. J.R., T.Y., K.K. and T.T. performed device fabrication and characterization. S.B.-G., R.S. and S.B. performed the bolometer measurements. I.G., M.D. and S.B. characterized the temperature sensors and thin-film heaters. M.K., J.R., I.G., S.B.-G., S.B., T.Se. and T.So. analysed data and prepared figures with contributions from all authors. M.K., J.R., S.B., T.Se. and T.So. wrote the manuscript with comments from all authors. T.Se., S.B. and T.So. supervised the project and advised on device optimization.

Corresponding authors

Correspondence to Martin Kaltenbrunner or Takao Someya.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Text, Supplementary Figures 1-17 and additional references. (PDF 12986 kb)

Free-floating, indestructible electronic foil

In the video, an 8 cm by 8 cm tactile sensing foil falls from a height of approximately 2 m together with a goose feather (approximately 12 cm long and 3.5 cm wide, 0.11 g) for comparison. The extreme lightweight design of the electronic foil allows floating in air, the device almost instantly reaches its terminal velocity of only 0.2 m/s. In that way, no damage is caused to the electronic circuit, even when dropped from arbitrary heights. (MOV 3596 kb)

Stop-motion video of a stretchable transistor

Still images were composed into a stop-motion movie showing an ultrathin transistor atop the prestretched VHB elastomer, undergoing repeated compression to 50 % and re-stretching. (MOV 2870 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaltenbrunner, M., Sekitani, T., Reeder, J. et al. An ultra-lightweight design for imperceptible plastic electronics. Nature 499, 458–463 (2013). https://doi.org/10.1038/nature12314

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature12314

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing