Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

T-helper-1-cell cytokines drive cancer into senescence

Subjects

Abstract

Cancer control by adaptive immunity involves a number of defined death1,2,3,4,5,6,7,8 and clearance9,10,11 mechanisms. However, efficient inhibition of exponential cancer growth by T cells and interferon-γ (IFN-γ) requires additional undefined mechanisms that arrest cancer cell proliferation1,2,3,4,5,12,13. Here we show that the combined action of the T-helper-1-cell cytokines IFN-γ and tumour necrosis factor (TNF) directly induces permanent growth arrest in cancers. To safely separate senescence induced by tumour immunity from oncogene-induced senescence9,10,11,14,15,16,17, we used a mouse model in which the Simian virus 40 large T antigen (Tag) expressed under the control of the rat insulin promoter creates tumours by attenuating p53- and Rb-mediated cell cycle control18,19. When combined, IFN-γ and TNF drive Tag-expressing cancers into senescence by inducing permanent growth arrest in G1/G0, activation of p16INK4a (also known as CDKN2A), and downstream Rb hypophosphorylation at serine 795. This cytokine-induced senescence strictly requires STAT1 and TNFR1 (also known as TNFRSF1A) signalling in addition to p16INK4a. In vivo, Tag-specific T-helper 1 cells permanently arrest Tag-expressing cancers by inducing IFN-γ- and TNFR1-dependent senescence. Conversely, Tnfr1−/−Tag-expressing cancers resist cytokine-induced senescence and grow aggressively, even in TNFR1-expressing hosts. Finally, as IFN-γ and TNF induce senescence in numerous murine and human cancers, this may be a general mechanism for arresting cancer progression.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Combined, the TH1 cytokines IFN-γ and TNF induce stable growth arrest of Tag-driven β-cancer cells in vitro.
Figure 2: STAT1- and TNFR1-dependent stabilization of the p16INK4a–Rb senescence pathway in β-cancer cells by the combined action of IFN-γ and TNF in vitro.
Figure 3: TNFR1-dependent induction of growth arrest and senescence in β-cancer cells by TH1 immunity in vivo.
Figure 4: T H 1 immunity induces TNFR1-dependent, permanent growth arrest of β-cancer cells that remains stable for ≥10 weeks, even after transfer into immune-deficient NOD–SCID  Il2rg −/− mice.

Similar content being viewed by others

References

  1. Finn, O. J. Cancer immunology. N. Engl. J. Med. 358, 2704–2715 (2008)

    Article  CAS  Google Scholar 

  2. Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell 144, 646–674 (2011)

    Article  CAS  Google Scholar 

  3. Schreiber, R. D., Old, L. J. & Smyth, M. J. Cancer immunoediting: integrating immunity’s roles in cancer suppression and promotion. Science 331, 1565–1570 (2011)

    Article  ADS  CAS  Google Scholar 

  4. Koebel, C. M. et al. Adaptive immunity maintains occult cancer in an equilibrium state. Nature 450, 903–907 (2007)

    Article  ADS  CAS  Google Scholar 

  5. van den Broek, M. E. et al. Decreased tumor surveillance in perforin-deficient mice. J. Exp. Med. 184, 1781–1790 (1996)

    Article  CAS  Google Scholar 

  6. Willimsky, G. & Blankenstein, T. Sporadic immunogenic tumours avoid destruction by inducing T-cell tolerance. Nature 437, 141–146 (2005)

    Article  ADS  CAS  Google Scholar 

  7. Mocikat, R. et al. Natural killer cells activated by MHC class ILow targets prime dendritic cells to induce protective CD8 T cell responses. Immunity 19, 561–569 (2003)

    Article  CAS  Google Scholar 

  8. Hung, K. et al. The central role of CD4+ T cells in the antitumor immune response. J. Exp. Med. 188, 2357–2368 (1998)

    Article  CAS  Google Scholar 

  9. Xue, W. et al. Senescence and tumour clearance is triggered by p53 restoration in murine liver carcinomas. Nature 445, 656–660 (2007)

    CAS  PubMed  Google Scholar 

  10. Rakhra, K. et al. CD4+ T cells contribute to the remodeling of the microenvironment required for sustained tumor regression upon oncogene inactivation. Cancer Cell 18, 485–498 (2010)

    Article  CAS  Google Scholar 

  11. Kang, T. W. et al. Senescence surveillance of pre-malignant hepatocytes limits liver cancer development. Nature 479, 547–551 (2011)

    Article  ADS  CAS  Google Scholar 

  12. Müller-Hermelink, N. et al. TNFR1 signaling and IFN-γ signaling determine whether T cells induce tumor dormancy or promote multistage carcinogenesis. Cancer Cell 13, 507–518 (2008)

    Article  Google Scholar 

  13. Röcken, M. Early tumor dissemination, but late metastasis: insights into tumor dormancy. J. Clin. Invest. 120, 1800–1803 (2010)

    Article  Google Scholar 

  14. Braig, M. et al. Oncogene-induced senescence as an initial barrier in lymphoma development. Nature 436, 660–665 (2005)

    Article  ADS  CAS  Google Scholar 

  15. Campisi, J. & d’Adda di Fagagna, F. Cellular senescence: when bad things happen to good cells. Nature Rev. Mol. Cell Biol. 8, 729–740 (2007)

    Article  CAS  Google Scholar 

  16. Collado, M. & Serrano, M. Senescence in tumours: evidence from mice and humans. Nature Rev. Cancer 10, 51–57 (2010)

    Article  CAS  Google Scholar 

  17. Nardella, C., Clohessy, J. G., Alimonti, A. & Pandolfi, P. P. Pro-senescence therapy for cancer treatment. Nature Rev. Cancer 11, 503–511 (2011)

    Article  CAS  Google Scholar 

  18. Bergers, G., Javaherian, K., Lo, K. M., Folkman, J. & Hanahan, D. Effects of angiogenesis inhibitors on multistage carcinogenesis in mice. Science 284, 808–812 (1999)

    Article  ADS  CAS  Google Scholar 

  19. Casanovas, O., Hager, J. H., Chun, M. G. & Hanahan, D. Incomplete inhibition of the Rb tumor suppressor pathway in the context of inactivated p53 is sufficient for pancreatic islet tumorigenesis. Oncogene 24, 6597–6604 (2005)

    Article  CAS  Google Scholar 

  20. Hunder, N. N. et al. Treatment of metastatic melanoma with autologous CD4+ T cells against NY-ESO-1. N. Engl. J. Med. 358, 2698–2703 (2008)

    Article  CAS  Google Scholar 

  21. Kenter, G. G. et al. Vaccination against HPV-16 oncoproteins for vulvar intraepithelial neoplasia. N. Engl. J. Med. 361, 1838–1847 (2009)

    Article  CAS  Google Scholar 

  22. Hodi, F. S. et al. Improved survival with ipilimumab in patients with metastatic melanoma. N. Engl. J. Med. 363, 711–723 (2010)

    Article  CAS  Google Scholar 

  23. Schwartzentruber, D. J. et al. gp100 peptide vaccine and interleukin-2 in patients with advanced melanoma. N. Engl. J. Med. 364, 2119–2127 (2011)

    Article  CAS  Google Scholar 

  24. Morgan, R. A. et al. Cancer regression in patients after transfer of genetically engineered lymphocytes. Science 314, 126–129 (2006)

    Article  ADS  CAS  Google Scholar 

  25. Canova, C. et al. Genetic associations of 115 polymorphisms with cancers of the upper aerodigestive tract across 10 European countries: the ARCAGE project. Cancer Res. 69, 2956–2965 (2009)

    Article  CAS  Google Scholar 

  26. Critchley-Thorne, R. J. et al. Impaired interferon signaling is a common immune defect in human cancer. Proc. Natl Acad. Sci. USA 106, 9010–9015 (2009)

    Article  ADS  CAS  Google Scholar 

  27. Zhang, B., Karrison, T., Rowley, D. A. & Schreiber, H. IFN-γ- and TNF-dependent bystander eradication of antigen-loss variants in established mouse cancers. J. Clin. Invest. 118, 1398–1404 (2008)

    Article  CAS  Google Scholar 

  28. Gurzov, E. N. et al. Pancreatic β-cells activate a JunB/ATF3-dependent survival pathway during inflammation. Oncogene 31, 1723–1732 (2012)

    Article  CAS  Google Scholar 

  29. Kuilman, T. et al. Oncogene-induced senescence relayed by an interleukin-dependent inflammatory network. Cell 133, 1019–1031 (2008)

    Article  CAS  Google Scholar 

  30. Acosta, J. C. et al. Chemokine signaling via the CXCR2 receptor reinforces senescence. Cell 133, 1006–1018 (2008)

    Article  CAS  Google Scholar 

  31. Hanahan, D. Heritable formation of pancreatic β-cell tumours in transgenic mice expressing recombinant insulin/simian virus 40 oncogenes. Nature 315, 115–122 (1985)

    Article  ADS  CAS  Google Scholar 

  32. Pfeffer, K. et al. Mice deficient for the 55 kd tumor necrosis factor receptor are resistant to endotoxic shock, yet succumb to L. monocytogenes infection. Cell 73, 457–467 (1993)

    Article  CAS  Google Scholar 

  33. Förster, I., Hirose, R., Arbeit, J. M., Clausen, B. E. & Hanahan, D. Limited capacity for tolerization of CD4+ T cells specific for a pancreatic β cell neo-antigen. Immunity 2, 573–585 (1995)

    Article  Google Scholar 

  34. Maglione, J. E. et al. Transgenic polyoma middle-T mice model premalignant mammary disease. Cancer Res. 61, 8298–8305 (2001)

    CAS  PubMed  Google Scholar 

  35. Shultz, L. D., Ishikawa, F. & Greiner, D. L. Humanized mice in translational biomedical research. Nature Rev. Immunol. 7, 118–130 (2007)

    Article  CAS  Google Scholar 

  36. Ziegler, A. et al. EpCAM, a human tumor-associated antigen promotes Th2 development and tumour immune evasion. Blood 113, 3494–3502 (2009)

    Article  CAS  Google Scholar 

  37. Monks, A. et al. Feasibility of a high-flux anticancer drug screen using a diverse panel of cultured human tumor cell lines. J. Natl. Cancer Inst. 83, 757–766 (1991)

    Article  CAS  Google Scholar 

  38. Keyes, W. M. et al. p63 deficiency activates a program of cellular senescence and leads to accelerated aging. Genes Dev. 19, 1986–1999 (2005)

    Article  CAS  Google Scholar 

  39. Dickins, R. A. et al. Probing tumor phenotypes using stable and regulated synthetic microRNA precursors. Nature Genet. 37, 1289–1295 (2005)

    Article  CAS  Google Scholar 

  40. Kneilling, M. et al. Direct crosstalk between mast cell-TNF and TNFR1-expressing endothelia mediates local tissue inflammation. Blood 114, 1696–1706 (2009)

    Article  CAS  Google Scholar 

  41. Kunder, S. et al. A comprehensive antibody panel for immunohistochemical analysis of formalin-fixed, paraffin-embedded hematopoietic neoplasms of mice: analysis of mouse specific and human antibodies cross-reactive with murine tissue. Toxicol. Pathol. 35, 366–375 (2007)

    Article  CAS  Google Scholar 

  42. Hennige, A. M. et al. Overexpression of kinase-negative protein kinase Cδ in pancreatic β-cells protects mice from diet-induced glucose intolerance and β-cell dysfunction. Diabetes 59, 119–127 (2010)

    Article  CAS  Google Scholar 

  43. Biedermann, T. et al. Mast cells control neutrophil recruitment during T cell-mediated delayed-type hypersensitivity reactions through tumor necrosis factor and macrophage inflammatory protein 2. J. Exp. Med. 192, 1441–1452 (2000)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank A. Knuth, H. G. Rammensee, K. Ghoreschi, J. Brück, G. Riethmüller, G. Stingl, T. Biedermann and A. Yazdi for discussions, T. Haug for technical support in the chromium release assay, R. Dummer for melanoma samples, W. Kempf for technical support in the cell cycle analysis and S. Lowe for the p16–p19 shRNA concept. The technical assistance of S. Weidemann and M. Dierstein is gratefully acknowledged. This work is part of the doctoral thesis of E.B., S.A., M.H., K.B., J.Berdel and C.G., and was supported by the Sander Stiftung (2005.043.2 and 2005.043.3), the Deutsche Krebshilfe (No. 109037), the IZKF-Promotionskolleg ‘Molekulare Medizin’ 2010 (1886-0-0), 2011 (PK 2011-3) and 2012 (PK 2012-1), the Deutsche Forschungsgemeinschaft (SFB 685, SFB 773 and Wi 1279/3-1) and in part by the German Federal Ministry of Education and Research (BMBF) to the German Center for Diabetes Research (DzD e.V.).

Author information

Authors and Affiliations

Authors

Contributions

M.R. originally developed the concept, further elaborated on it, and designed the experiments together with H.B., T.W., R.M. and K.S.-O. H.B., T.W., S.A., M.K., C.G., F.E., M.H., K.B., T.M. and E.B. performed experiments and analysed the data. B.F. and M.S. established and carried out fluorescence microscopy. L.Q.-M. and F.F. performed light microscopy and advised on cell biology. M.A., K.S. and R.H. supervised and performed the β-cancer-cell-transfer experiments. L.Z. and M.P. generated shp16–p19 MSCV vectors and supervised the knockdown experiments. H.N. and F.M. isolated primary melanoma cells, J.Berdel and J.Bauer collected human melanoma specimen and performed immunohistochemical analysis. F.R., S.U. and H.-U.H. isolated β-cancer cells and advised on β-cell physiology. H.B., T.W., M.v.d.B., K.S.-O. and M.R. interpreted the data and wrote the paper.

Corresponding author

Correspondence to Martin Röcken.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This fie contains Supplementary Figures 1-16, Supplementary Tables 1-3, a chart showing the clinical and pathological characterization of patients, and a chart showing the sequences for RNA constructs. (PDF 3208 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Braumüller, H., Wieder, T., Brenner, E. et al. T-helper-1-cell cytokines drive cancer into senescence. Nature 494, 361–365 (2013). https://doi.org/10.1038/nature11824

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature11824

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer