Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Observation of spatially ordered structures in a two-dimensional Rydberg gas

Subjects

Abstract

The ability to control and tune interactions in ultracold atomic gases has paved the way for the realization of new phases of matter. So far, experiments have achieved a high degree of control over short-range interactions, but the realization of long-range interactions has become a central focus of research because it would open up a new realm of many-body physics. Rydberg atoms are highly suited to this goal because the van der Waals forces between them are many orders of magnitude larger than those between ground-state atoms1. Consequently, mere laser excitation of ultracold gases can cause strongly correlated many-body states to emerge directly when atoms are transferred to Rydberg states. A key example is a quantum crystal composed of coherent superpositions of different, spatially ordered configurations of collective excitations2,3,4,5. Here we use high-resolution, in situ Rydberg atom imaging to measure directly strong correlations in a laser-excited, two-dimensional atomic Mott insulator6. The observations reveal the emergence of spatially ordered excitation patterns with random orientation, but well-defined geometry, in the high-density components of the prepared many-body state. Together with a time-resolved analysis, this supports the description of the system in terms of a correlated quantum state of collective excitations delocalized throughout the gas. Our experiment demonstrates the potential of Rydberg gases to realize exotic phases of matter, thereby laying the basis for quantum simulations of quantum magnets with long-range interactions.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematics of the many-body excitation.
Figure 2: Spatially ordered components of the many-body states.
Figure 3: Correlation functions of Rydberg excitations.
Figure 4: Time evolution of the number of Rydberg excitations.

Similar content being viewed by others

References

  1. Saffman, M., Walker, T. & Mølmer, K. Quantum information with Rydberg atoms. Rev. Mod. Phys. 82, 2313–2363 (2010)

    Article  ADS  CAS  Google Scholar 

  2. Weimer, H., Löw, R., Pfau, T. & Büchler, H. P. Quantum critical behavior in strongly interacting Rydberg gases. Phys. Rev. Lett. 101, 250601 (2008)

    Article  ADS  Google Scholar 

  3. Pohl, T., Demler, E. & Lukin, M. D. Dynamical crystallization in the dipole blockade of ultracold atoms. Phys. Rev. Lett. 104, 043002 (2010)

    Article  ADS  CAS  Google Scholar 

  4. Schachenmayer, J., Lesanovsky, I., Micheli, A. & Daley, A. J. Dynamical crystal creation with polar molecules or Rydberg atoms in optical lattices. N. J. Phys. 12, 103044 (2010)

    Article  Google Scholar 

  5. Gärttner, M., Heeg, K. P., Gasenzer, T. & Evers, J. Dynamical formation of floating Rydberg excitation crystals. Preprint at http://arXiv.org/abs/1203.2884v2 (2012)

  6. Bloch, I., Dalibard, J. & Zwerger, W. Many-body physics with ultracold gases. Rev. Mod. Phys. 80, 885–964 (2008)

    Article  ADS  CAS  Google Scholar 

  7. Jaksch, D., Cirac, J. I., Zoller, P., Côté, R. & Lukin, M. D. Fast quantum gates for neutral atoms. Phys. Rev. Lett. 85, 2208–2211 (2000)

    Article  ADS  CAS  Google Scholar 

  8. Lukin, M. et al. Dipole blockade and quantum information processing in mesoscopic atomic ensembles. Phys. Rev. Lett. 87, 037901 (2001)

    Article  ADS  CAS  Google Scholar 

  9. Pupillo, G., Micheli, A., Boninsegni, M., Lesanovsky, I. & Zoller, P. Strongly correlated gases of Rydberg-dressed atoms: quantum and classical dynamics. Phys. Rev. Lett. 104, 223002 (2010)

    Article  ADS  CAS  Google Scholar 

  10. Henkel, N., Nath, R. & Pohl, T. Three-dimensional roton excitations and supersolid formation in Rydberg-excited Bose-Einstein condensates. Phys. Rev. Lett. 104, 195302 (2010)

    Article  ADS  CAS  Google Scholar 

  11. Cinti, F. et al. Supersolid droplet crystal in a dipole-blockaded gas. Phys. Rev. Lett. 105, 135301 (2010)

    Article  ADS  CAS  Google Scholar 

  12. Honer, J., Weimer, H., Pfau, T. & Büchler, H. Collective many-body interaction in Rydberg dressed atoms. Phys. Rev. Lett. 105, 160404 (2010)

    Article  ADS  Google Scholar 

  13. Robicheaux, F. & Hernández, J. Many-body wave function in a dipole blockade configuration. Phys. Rev. A 72, 063403 (2005)

    Article  ADS  Google Scholar 

  14. van Bijnen, R. M. W., Smit, S., van Leeuwen, K. H., Vredenbregt, E. J. D. & Kokkelmans, S. J. J. M. F. Adiabatic formation of Rydberg crystals with chirped laser pulses. J. Phys. B 44, 184008 (2011)

    Article  ADS  Google Scholar 

  15. Lesanovsky, I. Many-body spin interactions and the ground state of a dense Rydberg lattice gas. Phys. Rev. Lett. 106, 025301 (2011)

    Article  ADS  Google Scholar 

  16. Höning, M., Muth, D., Petrosyan, D. & Fleischhauer, M. Steady-state crystallization of Rydberg excitations in an optically driven lattice gas. Preprint at http://arXiv.org/abs/1208.2911 (2012)

  17. Tong, D. et al. Local blockade of Rydberg excitation in an ultracold gas. Phys. Rev. Lett. 93, 063001 (2004)

    Article  ADS  CAS  Google Scholar 

  18. Urban, E. et al. Observation of Rydberg blockade between two atoms. Nature Phys. 5, 110–114 (2009)

    Article  ADS  CAS  Google Scholar 

  19. Gaëtan, A. et al. Observation of collective excitation of two individual atoms in the Rydberg blockade regime. Nature Phys. 5, 115–118 (2009)

    Article  ADS  Google Scholar 

  20. Schwarzkopf, A., Sapiro, R. & Raithel, G. Imaging spatial correlations of Rydberg excitations in cold atom clouds. Phys. Rev. Lett. 107, 103001 (2011)

    Article  ADS  CAS  Google Scholar 

  21. Dudin, Y. O. & Kuzmich, A. Strongly interacting Rydberg excitations of a cold atomic gas. Science 336, 887–889 (2012)

    Article  ADS  CAS  Google Scholar 

  22. Wilk, T. et al. Entanglement of two individual neutral atoms using Rydberg blockade. Phys. Rev. Lett. 104, 010502 (2010)

    Article  ADS  CAS  Google Scholar 

  23. Isenhower, L. et al. Demonstration of a neutral atom controlled-NOT quantum gate. Phys. Rev. Lett. 104, 010503 (2010)

    Article  ADS  CAS  Google Scholar 

  24. Raitzsch, U. et al. Echo experiments in a strongly interacting Rydberg gas. Phys. Rev. Lett. 100, 013002 (2008)

    Article  ADS  Google Scholar 

  25. Reetz-Lamour, M., Amthor, T., Deiglmayr, J. & Weidemüller, M. Rabi oscillations and excitation trapping in the coherent excitation of a mesoscopic frozen Rydberg gas. Phys. Rev. Lett. 100, 253001 (2008)

    Article  ADS  CAS  Google Scholar 

  26. Dudin, Y. O., Li, L., Bariani, F. & Kuzmich, A. Observation of coherent many-body Rabi oscillations. Nature Phys. http://dx.doi.org/10.1038/nphys2413 (published online, 9 September 2012)

    Google Scholar 

  27. Löw, R. et al. Universal scaling in a strongly interacting Rydberg gas. Phys. Rev. A 80, 033422 (2009)

    Article  ADS  Google Scholar 

  28. Viteau, M. et al. Rydberg excitations in Bose-Einstein condensates in quasi-one-dimensional potentials and optical lattices. Phys. Rev. Lett. 107, 060402 (2011)

    Article  ADS  CAS  Google Scholar 

  29. Olmos, B., Li, W., Hofferberth, S. & Lesanovsky, I. Amplifying single impurities immersed in a gas of ultracold atoms. Phys. Rev. A 84, 041607(R) (2011)

    Article  ADS  Google Scholar 

  30. Günter, G. et al. Interaction enhanced imaging of individual Rydberg atoms in dense gases. Phys. Rev. Lett. 108, 013002 (2012)

    Article  ADS  Google Scholar 

  31. Endres, M. et al. Observation of correlated particle-hole pairs and string order in low-dimensional Mott insulators. Science 334, 200–203 (2011)

    Article  ADS  CAS  Google Scholar 

  32. Müller, M., Lesanovsky, I., Weimer, H., Büchler, H. P. & Zoller, P. Mesoscopic Rydberg gate based on electromagnetically induced transparency. Phys. Rev. Lett. 102, 170502 (2009)

    Article  ADS  Google Scholar 

  33. Weimer, H., Müller, M., Lesanovsky, I., Zoller, P. & Büchler, H. P. A Rydberg quantum simulator. Nature Phys. 6, 382–388 (2010)

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank R. Löw for discussions. We acknowledge funding by MPG, DFG, EU (NAMEQUAM, AQUTE, Marie Curie Fellowship to M.C.) and JSPS (Postdoctoral Fellowship for Research Abroad to T.F.).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed extensively to the work presented in this paper.

Corresponding author

Correspondence to Peter Schauß.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Text and Data 1-7, Supplementary Figures 1-3, Supplementary Tables 1-2 and additional references. (PDF 324 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schauß, P., Cheneau, M., Endres, M. et al. Observation of spatially ordered structures in a two-dimensional Rydberg gas. Nature 491, 87–91 (2012). https://doi.org/10.1038/nature11596

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature11596

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing