Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Structure-based prediction of protein–protein interactions on a genome-wide scale

A Corrigendum to this article was published on 06 March 2013

This article has been updated

Abstract

The genome-wide identification of pairs of interacting proteins is an important step in the elucidation of cell regulatory mechanisms1,2. Much of our present knowledge derives from high-throughput techniques such as the yeast two-hybrid assay and affinity purification3, as well as from manual curation of experiments on individual systems4. A variety of computational approaches based, for example, on sequence homology, gene co-expression and phylogenetic profiles, have also been developed for the genome-wide inference of protein–protein interactions (PPIs)5,6. Yet comparative studies suggest that the development of accurate and complete repertoires of PPIs is still in its early stages7,8,9. Here we show that three-dimensional structural information can be used to predict PPIs with an accuracy and coverage that are superior to predictions based on non-structural evidence. Moreover, an algorithm, termed PrePPI, which combines structural information with other functional clues, is comparable in accuracy to high-throughput experiments, yielding over 30,000 high-confidence interactions for yeast and over 300,000 for human. Experimental tests of a number of predictions demonstrate the ability of the PrePPI algorithm to identify unexpected PPIs of considerable biological interest. The surprising effectiveness of three-dimensional structural information can be attributed to the use of homology models combined with the exploitation of both close and remote geometric relationships between proteins.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Predicting protein–protein interactions using PrePPI.
Figure 2: ROC curve and Venn diagram for PrePPI predictions and high-throughput experiments in yeast.
Figure 3: Models for the PPI formed between PRKD1 and PRKCE, and EEF1D and VHL using homology models and remote structural relationships.

Similar content being viewed by others

Change history

  • 06 March 2013

    Nature 490, 556–560 (2012); doi:10.1038/nature11503 In this Letter, one of the points shown in Fig. 2 and Supplementary Figs 8, 9 and Supplementary Table 4 reflects the presence of interactions that had been erroneously deposited from a previous publication1 into the IntAct database. We have now used the MINT database to retrieve these interactions, and Fig.

References

  1. Bonetta, L. Protein–protein interactions: interactome under construction. Nature 468, 851–854 (2010)

    ADS  CAS  PubMed  Google Scholar 

  2. Vidal, M., Cusick, M. E. & Barabasi, A. L. Interactome networks and human disease. Cell 144, 986–998 (2011)

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Shoemaker, B. A. & Panchenko, A. R. Deciphering protein–protein interactions. Part I. Experimental techniques and databases. PLOS Comput. Biol. 3, e42 (2007)

    ADS  PubMed  PubMed Central  Google Scholar 

  4. Reguly, T. et al. Comprehensive curation and analysis of global interaction networks in Saccharomyces cerevisiae. J. Biol. 5, 11 (2006)

    PubMed  PubMed Central  Google Scholar 

  5. Shoemaker, B. A. & Panchenko, A. R. Deciphering protein–protein interactions. Part II. Computational methods to predict protein and domain interaction partners. PLOS Comput. Biol. 3, e43 (2007)

    ADS  PubMed  PubMed Central  Google Scholar 

  6. Salwinski, L. & Eisenberg, D. Computational methods of analysis of protein–protein interactions. Curr. Opin. Struct. Biol. 13, 377–382 (2003)

    CAS  PubMed  Google Scholar 

  7. von Mering, C. et al. Comparative assessment of large-scale data sets of protein–protein interactions. Nature 417, 399–403 (2002)

    ADS  CAS  PubMed  Google Scholar 

  8. Braun, P. et al. An experimentally derived confidence score for binary protein–protein interactions. Nature Methods 6, 91–97 (2009)

    CAS  PubMed  Google Scholar 

  9. Deane, C. M., Salwinski, L., Xenarios, I. & Eisenberg, D. Protein interactions: two methods for assessment of the reliability of high throughput observations. Mol. Cell. Proteomics 1, 349–356 (2002)

    CAS  PubMed  Google Scholar 

  10. Pieper, U. et al. MODBASE: a database of annotated comparative protein structure models and associated resources. Nucleic Acids Res. 34, D291–D295 (2006)

    ADS  CAS  PubMed  Google Scholar 

  11. Mirkovic, N., Li, Z., Parnassa, A. & Murray, D. Strategies for high-throughput comparative modeling: applications to leverage analysis in structural genomics and protein family organization. Proteins 66, 766–777 (2007)

    CAS  PubMed  Google Scholar 

  12. Henrick, K. & Thornton, J. M. PQS: a protein quaternary structure file server. Trends Biochem. Sci. 23, 358–361 (1998)

    CAS  PubMed  Google Scholar 

  13. Aloy, P. & Russell, R. B. Interrogating protein interaction networks through structural biology. Proc. Natl Acad. Sci. USA 99, 5896–5901 (2002)

    ADS  CAS  PubMed  Google Scholar 

  14. Lu, L., Lu, H. & Skolnick, J. MULTIPROSPECTOR: an algorithm for the prediction of protein–protein interactions by multimeric threading. Proteins 49, 350–364 (2002)

    CAS  PubMed  Google Scholar 

  15. Davis, F. P. et al. Protein complex compositions predicted by structural similarity. Nucleic Acids Res. 34, 2943–2952 (2006)

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Tuncbag, N., Gursoy, A., Guney, E., Nussinov, R. & Keskin, O. Architectures and functional coverage of protein–protein interfaces. J. Mol. Biol. 381, 785–802 (2008)

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Zhang, Q. C., Petrey, D., Norel, R. & Honig, B. H. Protein interface conservation across structure space. Proc. Natl Acad. Sci. USA 107, 10896–10901 (2010)

    ADS  CAS  PubMed  Google Scholar 

  18. Gao, M. & Skolnick, J. Structural space of protein–protein interfaces is degenerate, close to complete, and highly connected. Proc. Natl Acad. Sci. USA 107, 22517–22522 (2010)

    ADS  CAS  PubMed  Google Scholar 

  19. Wass, M. N., Fuentes, G., Pons, C., Pazos, F. & Valencia, A. Towards the prediction of protein interaction partners using physical docking. Mol. Syst. Biol. 7, 469 (2011)

    PubMed  PubMed Central  Google Scholar 

  20. Chen, H. L. & Zhou, H. X. Prediction of interface residues in protein–protein complexes by a consensus neural network method: test against NMR data. Proteins 61, 21–35 (2005)

    CAS  PubMed  Google Scholar 

  21. Liang, S., Zhang, C., Liu, S. & Zhou, Y. Protein binding site prediction using an empirical scoring function. Nucleic Acids Res. 34, 3698–3707 (2006)

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Zhang, Q. C. et al. PredUs: a web server for predicting protein interfaces using structural neighbors. Nucleic Acids Res. 39, 283–287 (2011)

    Google Scholar 

  23. Yu, H. et al. High-quality binary protein interaction map of the yeast interactome network. Science 322, 104–110 (2008)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lefebvre, C. et al. A human B-cell interactome identifies MYB and FOXM1 as master regulators of proliferation in germinal centers. Mol. Syst. Biol. 6, 377 (2010)

    PubMed  PubMed Central  Google Scholar 

  25. Jansen, R. et al. A Bayesian networks approach for predicting protein–protein interactions from genomic data. Science 302, 449–453 (2003)

    ADS  CAS  PubMed  Google Scholar 

  26. von Mering, C. et al. STRING: known and predicted protein–protein associations, integrated and transferred across organisms. Nucleic Acids Res. 33, D433–D437 (2005)

    CAS  PubMed  Google Scholar 

  27. Stolovitzky, G., Prill, R. J. & Califano, A. Lessons from the DREAM2 challenges. Ann. NY Acad. Sci. 1158, 159–195 (2009)

    ADS  CAS  PubMed  Google Scholar 

  28. Keskin, O., Nussinov, R. & Gursoy, A. PRISM: protein–protein interaction prediction by structural matching. Methods Mol. Biol. 484, 505–521 (2008)

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Ewing, R. M. et al. Large-scale mapping of human protein–protein interactions by mass spectrometry. Mol. Syst. Biol. 3, 89 (2007)

    PubMed  PubMed Central  Google Scholar 

  30. Levitt, M. Nature of the protein universe. Proc. Natl Acad. Sci. USA 106, 11079–11084 (2009)

    ADS  CAS  PubMed  Google Scholar 

  31. Apweiler, R. et al. UniProt: the Universal Protein knowledgebase. Nucleic Acids Res. 32, D115–D119 (2004)

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Letunic, I., Doerks, T. & Bork, P. SMART 6: recent updates and new developments. Nucleic Acids Res. 37, D229–D232 (2009)

    CAS  PubMed  Google Scholar 

  33. Berman, H. M. et al. The Protein Data Bank. Nucleic Acids Res. 28, 235–242 (2000)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  34. Altschul, S. F. et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25, 3389–3402 (1997)

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Sanchez, R. & Sali, A. Large-scale protein structure modeling of the Saccharomyces cerevisiae genome. Proc. Natl Acad. Sci. USA 95, 13597–13602 (1998)

    ADS  CAS  PubMed  Google Scholar 

  36. Petrey, D. & Honig, B. GRASP2: visualization, surface properties, and electrostatics of macromolecular structures and sequences. Methods Enzymol. 374, 492–509 (2003)

    CAS  PubMed  Google Scholar 

  37. Yang, A. S. & Honig, B. An integrated approach to the analysis and modeling of protein sequences and structures. I. Protein structural alignment and a quantitative measure for protein structural distance. J. Mol. Biol. 301, 665–678 (2000)

    CAS  PubMed  Google Scholar 

  38. Krissinel, E. & Henrick, K. Inference of macromolecular assemblies from crystalline state. J. Mol. Biol. 372, 774–797 (2007)

    CAS  PubMed  Google Scholar 

  39. The Gene Ontology Consortium Gene ontology: tool for the unification of biology. Nature Genet. 25, 25–29 (2000)

    Google Scholar 

  40. Mewes, H. W., Albermann, K., Heumann, K., Liebl, S. & Pfeiffer, F. MIPS: a database for protein sequences, homology data and yeast genome information. Nucleic Acids Res. 25, 28–30 (1997)

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Huynen, M., Snel, B., Lathe, W., III & Bork, P. Predicting protein function by genomic context: quantitative evaluation and qualitative inferences. Genome Res. 10, 1204–1210 (2000)

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Sun, L. et al. Neuronal and glioma-derived stem cell factor induces angiogenesis within the brain. Cancer Cell 9, 287–300 (2006)

    CAS  PubMed  Google Scholar 

  43. Barrett, T. et al. NCBI GEO: archive for functional genomics data sets—10 years on. Nucleic Acids Res. 39, D1005–D1010 (2011)

    CAS  PubMed  Google Scholar 

  44. Enault, F., Suhre, K. & Claverie, J. M. Phydbac “Gene Function Predictor”: a gene annotation tool based on genomic context analysis. BMC Bioinformatics 6, 247 (2005)

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work is supported by National Institutes of Health grants GM030518 and GM094597 (B.H.), CA121852 (A.C. and B.H.), DK057539 (D.A.), CA082683 (T.H.), R01NS043915 (T.M.). L.D. thanks the China Scholarship Council scholarship 2010626059. We thank U. Pieper from A. Sali’s laboratory for help with ModBase, and H. Lee for help with SkyBase.

Author information

Authors and Affiliations

Authors

Contributions

Q.C.Z., D.P., A.C. and B.H. designed the research; Q.C.Z. performed the computational work; Q.C.Z., D.P., A.C. and B.H. analysed the data; L.D. set up the PrePPI web server, L.Q., Y.S., C.A.T. and B.B. performed co-immunoprecipitation studies, Q.C.Z., D.P., A.C. and B.H. wrote the paper including text from C.L., D.A., T.H. and T.M.

Corresponding authors

Correspondence to Andrea Califano or Barry Honig.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Figures 1-16, Supplementary Tables 1-6 and additional references. Supplementary Figures 8, 9, 10C and Supplementary Table 4 were corrected on 7 March 2013; please see the Corrigendum associated with the main paper for details. (PDF 3846 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Q., Petrey, D., Deng, L. et al. Structure-based prediction of protein–protein interactions on a genome-wide scale. Nature 490, 556–560 (2012). https://doi.org/10.1038/nature11503

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature11503

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing