Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Two stellar-mass black holes in the globular cluster M22

Abstract

Hundreds of stellar-mass black holes probably form in a typical globular star cluster, with all but one predicted to be ejected through dynamical interactions1,2,3. Some observational support for this idea is provided by the lack of X-ray-emitting binary stars comprising one black hole and one other star (‘black-hole/X-ray binaries’) in Milky Way globular clusters, even though many neutron-star/X-ray binaries are known4. Although a few black holes have been seen in globular clusters around other galaxies5,6, the masses of these cannot be determined, and some may be intermediate-mass black holes that form through exotic mechanisms7. Here we report the presence of two flat-spectrum radio sources in the Milky Way globular cluster M22, and we argue that these objects are black holes of stellar mass (each 10–20 times more massive than the Sun) that are accreting matter. We find a high ratio of radio-to-X-ray flux for these black holes, consistent with the larger predicted masses of black holes in globular clusters compared to those outside8. The identification of two black holes in one cluster shows that ejection of black holes is not as efficient as predicted by most models1,2,4, and we argue that M22 may contain a total population of 5–100 black holes. The large core radius of M22 could arise from heating produced by the black holes9.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: VLA radio continuum image of the core of the globular cluster M22.
Figure 2: Optical images of M22 and the candidate companion stars to the radio sources.
Figure 3: Radio–X-ray correlation for stellar-mass black holes.

Similar content being viewed by others

References

  1. Kulkarni, S. R., Hut, P. & McMillan, S. Stellar black holes in globular clusters. Nature 364, 421–423 (1993)

    Article  ADS  Google Scholar 

  2. Sigurdsson, S. & Hernquist, L. Primordial black holes in globular clusters. Nature 364, 423–425 (1993)

    Article  ADS  Google Scholar 

  3. Portegies Zwart, S. F. & McMillan, S. L. W. Black hole mergers in the universe. Astrophys. J. 528, L17–L20 (2000)

    Article  ADS  Google Scholar 

  4. Kalogera, V., King, A. R. & Rasio, F. A. Could black hole X-ray binaries be detected in globular clusters? Astrophys. J. 601, L171–L174 (2004)

    Article  ADS  CAS  Google Scholar 

  5. Maccarone, T. J., Kundu, A., Zepf, S. E. & Rhode, K. L. A black hole in a globular cluster. Nature 445, 183–185 (2007)

    Article  ADS  CAS  Google Scholar 

  6. Irwin, J. A., Brink, T. G., Bregman, J. N. & Roberts, T. P. Evidence for a stellar disruption by an intermediate-mass black hole in an extragalactic globular cluster. Astrophys. J. 712, L1–L4 (2010)

    Article  ADS  CAS  Google Scholar 

  7. Portegies Zwart, S. F., Baumgardt, H., Hut, P., Makino, J. & McMillan, S. L. W. Formation of massive black holes through runaway collisions in dense young star clusters. Nature 428, 724–726 (2004)

    Article  ADS  Google Scholar 

  8. Belczynski, K. et al. On the maximum mass of stellar black holes. Astrophys. J. 714, 1217–1226 (2010)

    Article  ADS  Google Scholar 

  9. Mackey, A. D., Wilkinson, M. I., Davies, M. B. & Gilmore, G. F. Black holes and core expansion in massive star clusters. Mon. Not. R. Astron. Soc. 386, 65–95 (2008)

    Article  ADS  Google Scholar 

  10. Strader, J. et al. No evidence for intermediate-mass black holes in globular clusters: strong constraints from the VLA. Astrophys. J. 750, L27 (2012)

    Article  ADS  Google Scholar 

  11. McLaughlin, D. & van der Marel, R. Resolved massive star clusters in the Milky Way and its satellites: brightness profiles and a catalog of fundamental parameters. Astrophys. J. Suppl. Ser. 161, 304–360 (2005)

    Article  ADS  CAS  Google Scholar 

  12. Monaco, L., Pancino, E., Ferraro, F. R. & Bellazzini, M. Wide-field photometry of the Galactic globular cluster M22. Mon. Not. R. Astron. Soc. 349, 1278–1290 (2004)

    Article  ADS  Google Scholar 

  13. Maccarone, T. & Knigge, C. Compact objects in globular clusters. Astron. Geophys. 48, 5.12–5.20 (2007)

    ADS  Google Scholar 

  14. Gallo, E., Fender, R. P. & Hynes, R. I. The radio spectrum of a quiescent stellar mass black hole. Mon. Not. R. Astron. Soc. 356, 1017–1021 (2005)

    Article  ADS  CAS  Google Scholar 

  15. Anderson, J. et al. The ACS survey of Galactic globular clusters. V. Generating a comprehensive star catalog for each cluster. Astron. J. 135, 2055–2073 (2008)

    Article  ADS  Google Scholar 

  16. Maccarone, T. J. Do X-ray binary spectral state transition luminosities vary? Astron. Astrophys. 409, 697–706 (2003)

    Article  ADS  Google Scholar 

  17. Gallo, E., Fender, R. P. & Pooley, G. G. A universal radio-X-ray correlation in low/hard state black hole binaries. Mon. Not. R. Astron. Soc. 344, 60–72 (2003)

    Article  ADS  Google Scholar 

  18. Gallo, E. et al. A radio-emitting outflow in the quiescent state of A0620–00: implications for modelling low-luminosity black hole binaries. Mon. Not. R. Astron. Soc. 370, 1351–1360 (2006)

    Article  ADS  CAS  Google Scholar 

  19. Miller-Jones, J. C. A., Jonker, P. G., Maccarone, T. J., Nelemans, G. & Calvelo, D. E. A deep radio survey of hard state and quiescent black hole X-Ray binaries. Astrophys. J. 739, L18 (2011)

    Article  ADS  Google Scholar 

  20. Miller-Jones, J. C. A. et al. Zooming in on a sleeping giant: milliarcsecond High Sensitivity Array imaging of the black hole binary V404 Cyg in quiescence. Mon. Not. R. Astron. Soc. 388, 1751–1758 (2008)

    ADS  CAS  Google Scholar 

  21. Corbel, S., Tomsick, J. A. & Kaaret, P. On the origin of black hole X-Ray emission in quiescence: Chandra observations of XTE J1550–564 and H1743–322. Astrophys. J. 636, 971–978 (2006)

    Article  ADS  Google Scholar 

  22. Merloni, A., Heinz, S. & di Matteo, T. A fundamental plane of black hole activity. Mon. Not. R. Astron. Soc. 345, 1057–1076 (2003)

    Article  ADS  Google Scholar 

  23. Remillard, R. A. & McClintock, J. E. X-ray properties of black-hole binaries. Annu. Rev. Astron. Astrophys. 44, 49–92 (2006)

    Article  ADS  Google Scholar 

  24. Tauris, T. M. & van den Heuvel, E. P. J. in Compact Stellar X-ray Sources (eds Lewin, W. H. G. & van der Klis, M. ) 623–665 (Cambridge Univ. Press, 2006)

    Book  Google Scholar 

  25. Ivanova, N. et al. Formation of black hole X-ray binaries in globular clusters. Astrophys. J. 717, 948–957 (2010)

    Article  ADS  Google Scholar 

  26. Repetto, S., Davies, M. B. & Sigurdsson, S. Investigating stellar-mass black hole kicks. Mon. Not. R. Astron. Soc. (in the press); preprint at http://arXiv.org/abs/1203.3077 (2012)

  27. Lynch, R. S., Ransom, S. M., Freire, P. C. C. & Stairs, I. H. Six new recycled globular cluster pulsars discovered with the Green Bank Telescope. Astrophys. J. 734, 89 (2011)

    Article  ADS  Google Scholar 

  28. Migliari, S. & Fender, R. P. Jets in neutron star X-ray binaries: a comparison with black holes. Mon. Not. R. Astron. Soc. 366, 79–91 (2006)

    Article  ADS  Google Scholar 

  29. Körding, E. G., Knigge, C., Tzioumis, T. & Fender, R. Detection of radio emission from a nova-like cataclysmic variable: evidence of jets? Mon. Not. R. Astron. Soc. 418, L129–L132 (2011)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The National Radio Astronomy Observatory is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc. L.C. is a Jansky Fellow of the National Radio Astronomy Observatory. This work is partially based on observations made with the NASA/ESA Hubble Space Telescope, and obtained from the Hubble Legacy Archive, which is a collaboration between the Space Telescope Science Institute (STScI/NASA), the Space Telescope European Coordinating Facility (ST-ECF/ESA) and the Canadian Astronomy Data Centre (CADC/NRC/CSA).

Author information

Authors and Affiliations

Authors

Contributions

J.S. wrote the text. L.C. reduced the data. All authors contributed to the interpretation of the data and commented on the final manuscript.

Corresponding author

Correspondence to Jay Strader.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Text, Supplementary References and Supplementary Figure 1. (PDF 159 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Strader, J., Chomiuk, L., Maccarone, T. et al. Two stellar-mass black holes in the globular cluster M22. Nature 490, 71–73 (2012). https://doi.org/10.1038/nature11490

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature11490

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing