Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

High-valent organometallic copper and palladium in catalysis

Subjects

Abstract

Copper and palladium catalysts are critically important in numerous commercial chemical processes. Improvements in the activity, selectivity and scope of these catalysts could drastically reduce the environmental impact, and increase the sustainability, of chemical reactions. One rapidly developing strategy for achieving these goals is to use ‘high-valent’ organometallic copper and palladium intermediates in catalysis. Here we describe recent advances involving both the fundamental chemistry and the applications of these high-valent metal complexes in numerous synthetically useful catalytic transformations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: High-valent copper complexes.
Figure 2: RI-NMR studies of the effect of Lewis bases on the reactivity of Cu( iii) complexes 8 and 9.
Figure 3: High-valent copper complexes involved in carbon–heteroatom bond formation.
Figure 4: Early examples of Pd( iii ) and Pd( iv ) organometallic complexes.
Figure 5: High-valent palladium complexes involved in carbon–halogen bond formation.
Figure 6: Palladium-catalysed chlorination.
Figure 7: Palladium-catalysed trifluoromethylation.
Figure 8: Oxidative bond-forming reactions catalysed by copper and palladium.

Similar content being viewed by others

References

  1. Magano, J. & Dunetz, J. R. Large-scale applications of transition metal-catalyzed couplings for the synthesis of pharmaceuticals. Chem. Rev. 111, 2177–2250 (2011)

    Google Scholar 

  2. Evano, G., Blanchard, N. & Toumi, M. Copper-mediated coupling reactions and their applications in natural products and designed biomolecules synthesis. Chem. Rev. 108, 3054–3131 (2008)

    Google Scholar 

  3. Krause, N., ed. Modern Organocopper Chemistry (Wiley-VCH, 2002)

  4. Eckert, M., Fleischmann, G., Jira, R., Bolt, H. M. & Golka, K. in Ullmann’s Encyclopedia of Industrial Chemistry 191–207 (Wiley-VCH, 2006)

  5. Corbet, J.-P. & Mignani, G. Selected patented cross-coupling reaction technologies. Chem. Rev. 106, 2651–2710 (2006)

    Google Scholar 

  6. Ullmann, F. On a new formation of diphenylamine derivatives. Ber. Deutsch. Chem. Ges. 36, 2382–2384 (1903)

    Google Scholar 

  7. Ullmann, F. Over a new preparation manner of phenylethersalicylic acid. Ber. Deutsch. Chem. Ges. 37, 853–854 (1904)

    Google Scholar 

  8. Beletskaya, I. P. & Cheprakov, A. V. Copper in cross-coupling reactions: the post-Ullmann chemistry. Coord. Chem. Rev. 248, 2337–2364 (2004)

    Google Scholar 

  9. Monnier, F. & Taillefer, M. Catalytic C–C, C–N, and C–O Ullmann-type coupling reactions. Angew. Chem. Int. Ed. 48, 6954–6971 (2009)

    Google Scholar 

  10. Ribas, X. & Casitas, A. in Ideas in Chemistry and Molecular Sciences: Where Chemistry Meets Life (ed. Pignataro, B. ) 31–57 (Wiley-VCH, 2010)This is a thorough review on high-valent copper chemistry.

  11. Sperotto, E., van Klink, G. P. M., van Koten, G. & de Vries, J. G. The mechanism of the modified Ullmann reaction. Dalton Trans. 39, 10338–10351 (2010)

    Google Scholar 

  12. Nakamura, E. & Mori, S. Wherefore art though copper? Structures and reaction mechanisms of organocuprate clusters in organic chemistry. Angew. Chem. Int. Ed. 39, 3750–3771 (2000)

    Google Scholar 

  13. Torborg, C. & Beller, M. Recent applications of palladium-catalyzed coupling reactions in the pharmaceutical, agrochemical, and fine chemical industries. Adv. Synth. Catal. 351, 3027–3043 (2009)

    Google Scholar 

  14. Hartwig, J. F. Electronic effects on reductive elimination to form carbon–carbon and carbon–heteroatom bonds from palladium(II) complexes. Inorg. Chem. 46, 1936–1947 (2007)

    Google Scholar 

  15. Willert-Porada, M. A., Burton, D. J. & Baenziger, N. C. Synthesis and X-ray structure of bis(trifluoromethyl)(N,N-diethyldithiocarbamato)-copper; a remarkably stable perfluoroalkylcopper(III) complex. J. Chem. Soc. Chem. Commun. 1633–1634 (1989)

  16. Furuta, H., Maeda, H. & Osuka, A. Doubly N-confused porphyrin: a new complexing agent capable of stabilizing higher oxidation states. J. Am. Chem. Soc. 122, 803–807 (2000)

    Google Scholar 

  17. Santo, R. et al. Diamagnetic-paramagnetic conversion of tris(2-pyridylthio)methylcopper(III) through a structural change from trigonal bipyramidal to octahedral. Angew. Chem. Int. Ed. 45, 7611–7614 (2006)

    Google Scholar 

  18. Cohen, T., Wood, J. & Dietz, A. G. Organocopper intermediates in the exchange reaction of aryl halides with salts of copper(I). The possible role of copper(III). Tetrahedr. Lett. 15, 3555–3558 (1974)

    Google Scholar 

  19. Dorigo, A. E., Wanner, J. & Schleyer, P. R. Computational evidence for the existence of CuIII intermediates in addition and substitution reactions with dialkylcuprates. Angew. Chem. Int. Edn Engl. 34, 476–478 (1995)

    Google Scholar 

  20. Snyder, J. P. Mechanism of lithium cuprate conjugate addition: neutral tetracoordinate CuI cuprates as essential intermediates. J. Am. Chem. Soc. 117, 11025–11026 (1995)

    Google Scholar 

  21. Karlström, A. S. E. & Bäckvall, J.-E. Experimental evidence supporting a CuIII intermediate in cross-coupling reactions of allylic esters with diallylcuprate species. Chemistry 7, 1981–1989 (2001)

    Google Scholar 

  22. Bertz, S. H., Cope, S., Murphy, M., Ogle, C. A. & Taylor, B. J. Rapid injection NMR in mechanistic organocopper chemistry. Preparation of the elusive copper(III) intermediate. J. Am. Chem. Soc. 129, 7208–7209 (2007)This paper reports the first observation of Cu( iii ) intermediates in conjugate addition reactions using RI-NMR.

    Google Scholar 

  23. Hu, H. & Snyder, J. P. Organocuprate conjugate addition: the square-planar “CuIII” intermediate. J. Am. Chem. Soc. 129, 7210–7211 (2007)

    Google Scholar 

  24. Bertz, S. H., Cope, S., Dorton, D., Murphy, M. & Ogle, C. A. Organocuprate cross-coupling: the central role of the copper(III) intermediate and the importance of the copper(I) precursor. Angew. Chem. Int. Ed. 46, 7082–7085 (2007)

    Google Scholar 

  25. Gärtner, T., Henze, W. & Gschwind, R. M. NMR detection of Cu(III) intermediates in substitution reactions of alkyl halides with Gilman cuprates. J. Am. Chem. Soc. 129, 11362–11363 (2007)

    Google Scholar 

  26. Bartholomew, E. R., Bertz, S. H., Cope, S., Murphy, M. & Ogle, C. A. Preparation of σ- and π-allylcopper(III) intermediates in SN2 and SN2′ reactions of organocuprate(I) reagents with allylic substrates. J. Am. Chem. Soc. 130, 11244–11245 (2008)

    Google Scholar 

  27. Bertz, S. H., Miao, G. & Eriksson, M. It’s on lithium! An answer to the recent communication which asked the question: “If the cyano ligand is not on copper, then where is it? Chem. Commun. (Camb.) 815–816 (1996)

  28. Alexakis, A., Vastra, J. & Mangeney, P. Acceleration of the conjugate addition of diethyl zinc to enones by either Cu(OTf)2 or trivalent phosphorous ligands. Tetrahedr. Lett. 38, 7745–7748 (1997)

    Google Scholar 

  29. Bartholomew, E. R. et al. Neutral organocopper(III) complexes. Chem. Commun. (Camb.) 1176–1177 (2008)

  30. Phipps, R. J. & Gaunt, M. J. A meta-selective copper-catalyzed C−H bond arylation. Science 323, 1593–1597 (2009)

    Google Scholar 

  31. Deprez, N. R. & Sanford, M. S. Synthetic and mechanistic studies of Pd-catalyzed C-H arylation with diaryliodonium salts: evidence for a bimetallic high oxidation state Pd intermediate. J. Am. Chem. Soc. 131, 11234–11241 (2009)

    Google Scholar 

  32. Chen, B., Hou, X.-L., Li, Y.-X. & Wu, Y.-D. Mechanistic understanding of the unexpected meta selectivity in copper-catalyzed anilide C−H bond arylation. J. Am. Chem. Soc. 133, 7668–7671 (2011)

    Google Scholar 

  33. Das, P., Sharma, D., Kumar, M. & Singh, B. Copper promoted C−N and C−O type cross-coupling reactions. Curr. Org. Chem. 14, 754–783 (2010)

    Google Scholar 

  34. Chan, D. M. T. & Lam, P. Y. S. in Boronic Acids (ed. Hall, D. G. ) 205–240 (Wiley-VCH, 2005)

    Google Scholar 

  35. Casitas, A. et al. Direct observation of CuI/CuIII redox steps relevant to Ullmann-type coupling reactions. Chem. Sci. 1, 326–330 (2010)

    Google Scholar 

  36. Kunz, K., Scholz, U. & Ganzer, D. Renaissance of Ullmann and Goldberg reactions: progress in copper catalyzed C−N-, C−O-, and C−S-coupling. Synlett 15, 2428–2439 (2003)

    Google Scholar 

  37. King, A. E. et al. Copper-catalyzed aerobic oxidative functionalization of an arene C−H bond: evidence for an aryl-copper(III) intermediate. J. Am. Chem. Soc. 132, 12068–12073 (2010)This paper demonstrates a Cu( iii )–aryl complex to be a catalytically relevant intermediate in a carbon–hydrogen bond amination and methoxylation reaction.

    Google Scholar 

  38. Brasche, G. & Buchwald, S. L. C–H functionalization/C–N bond formation: copper-catalyzed synthesis of benzimidazoles from amidines. Angew. Chem. Int. Ed. 47, 1932–1934 (2008)

    Google Scholar 

  39. Ueda, S. & Nagasawa, H. Synthesis of 2-arylbenzoxazoles by copper-catalyzed intramolecular oxidative C–O coupling of benzanilides. Angew. Chem. Int. Ed. 47, 6411–6413 (2008)

    Google Scholar 

  40. Hamada, T., Ye, X. & Stahl, S. S. Copper-catalyzed aerobic oxidative amidation of terminal alkynes: efficient synthesis of ynamides. J. Am. Chem. Soc. 130, 833–835 (2008)

    Google Scholar 

  41. Uemura, T., Imoto, S. & Chatani, N. Amination of the ortho C–H bonds by the Cu(OAc)2-mediated reaction of 2-phenylpyridines with anilines. Chem. Lett. 35, 842–843 (2006)

    Google Scholar 

  42. Mizuhara, T., Inuki, S., Oishi, S., Fujii, N. & Ohno, H. Cu(II)-mediated oxidative intermolecular ortho C−H functionalisation using tetrahydropyrimidine as the directing group. Chem. Commun. (Camb.) 3413–3415 (2009)

  43. Huffman, L. M. & Stahl, S. S. Carbon−nitrogen bond formation involving well-defined aryl-copper(III) complexes. J. Am. Chem. Soc. 130, 9196–9197 (2008)

    Google Scholar 

  44. Tye, J. W., Weng, Z., Johns, A. M., Incarvito, C. D. & Hartwig, J. F. Copper complexes of anionic nitrogen ligands in the amidation and imidation of aryl halides. J. Am. Chem. Soc. 130, 9971–9983 (2008)

    Google Scholar 

  45. Jones, G. O., Liu, P., Houk, K. N. & Buchwald, S. L. Computational explorations of mechanisms and ligand-directed selectivities of copper-catalyzed Ullmann-type reactions. J. Am. Chem. Soc. 132, 6205–6213 (2010)

    Google Scholar 

  46. Yu, H.-Z., Jiang, Y.-Y., Fu, Y. & Liu, L. Alternative mechanistic explanation for ligand-dependent selectivities in copper-catalyzed N- and O-arylation reactions. J. Am. Chem. Soc. 132, 18078–18091 (2010)

    Google Scholar 

  47. Ribas, X. et al. Aryl C−H activation by CuII to form an organometallic aryl-CuIII species: a novel twist on copper disproportionation. Angew. Chem. Int. Ed. 41, 2991–2994 (2002)This paper reports an early example of an isolatable, well-characterized Cu( iii )–aryl complex.

    Google Scholar 

  48. Wendlandt, A. E., Suess, A. M. & Stahl, S. S. Copper-catalyzed aerobic oxidative C–H functionalizations: trends and mechanistic insights. Angew. Chem. Int. Ed. 50, 11062–11087 (2011)

    Google Scholar 

  49. Ueda, S. & Nagasawa, H. Copper-catalyzed synthesis of benzoxazoles via a regioselective C-H functionalization/C-O bond formation under an air atmosphere. J. Org. Chem. 74, 4272–4277 (2009)

    Google Scholar 

  50. Siemsen, P., Livingston, R. C. & Diederich, F. Acetylenic coupling: a powerful tool in molecular construction. Angew. Chem. Int. Ed. 39, 2632–2657 (2000)

    Google Scholar 

  51. Gao, Y. et al. Copper-catalyzed aerobic oxidative coupling of terminal alkynes with H-phosphates leading to alkynylphosphonates. J. Am. Chem. Soc. 131, 7956–7957 (2009)

    Google Scholar 

  52. Chen, X., Hao, X.-S., Goodhue, C. E. & Yu, J.-Q. Cu(II)-catalyzed functionalizations of aryl C−H bonds using O2 as an oxidant. J. Am. Chem. Soc. 128, 6790–6791 (2006)

    Google Scholar 

  53. Wang, W., Luo, F., Zhang, S. & Cheng, J. Copper(II)-catalyzed ortho-acyloxylation of the 2-arylpyridines sp2 C−H bonds with anhydrides, using O2 as terminal oxidant. J. Org. Chem. 75, 2415–2418 (2010)

    Google Scholar 

  54. Casitas, A., Canta, M., Solá, M., Costas, M. & Ribas, X. Nucleophilic aryl fluorination and aryl halide exchange mediated by a CuI/CuIII catalytic cycle. J. Am. Chem. Soc. 133, 19386–19392 (2011)

    Google Scholar 

  55. Heck, R. F. Aromatic haloethylation with palladium and copper halides. J. Am. Chem. Soc. 90, 5538–5542 (1968)

    Google Scholar 

  56. Fahey, D. R. The coordination-catalyzed ortho-halogenation of azobenzene. J. Organomet. Chem. 27, 283–292 (1971)

    Google Scholar 

  57. Tremont, S. J. & Rahman, H. U. Ortho-alkylation of acetanilides using alkyl halides and palladium acetate. J. Am. Chem. Soc. 106, 5759–5760 (1984)

    Google Scholar 

  58. Byers, P. K., Canty, A. J., Skelton, B. W. & White, A. H. Oxidative addition of iodomethane to [PdMe2(bpy)] and the X-ray structure of the organopalladium(iv) product fac-[PdMe3(bpy)I] (bpy = 2,2′bipyridyl). J. Chem. Soc. Chem. Commun.1722–1724 (1986)

  59. Cotton, F. A. et al. High yield syntheses of stable, singly bonded Pd26+ compounds. J. Am. Chem. Soc. 128, 13674–13675 (2006)

    Google Scholar 

  60. Roy, A. H. & Hartwig, J. F. Directly observed reductive elimination of aryl halides from monomeric arylpalladium(II) halide complexes. J. Am. Chem. Soc. 125, 13944–13945 (2003)

    Google Scholar 

  61. Collman, J. P., Hegedus, L. S., Norton, J. R. & Finke, R. G. Principles and Applications of Organotransition Metal Chemistry 2nd edn 322–333 (University Science Books, 1982)

    Google Scholar 

  62. Canty, A. J. Organopalladium and platinum chemistry in oxidizing milieu as models for organic synthesis involving the higher oxidation states of palladium. Dalton Trans. 47, 10409–10417 (2009)

    Google Scholar 

  63. Muñiz, K. High-oxidation-state palladium catalysis: new reactivity for organic synthesis. Angew. Chem. Int. Ed. 48, 9412–9423 (2009)This is a thorough review on high-valent palladium chemistry.

    Google Scholar 

  64. Xu, L.-M., Li, B.-J., Yang, Z. & Shi, Z.-J. Organopalladium(IV) chemistry. Chem. Soc. Rev. 39, 712–733 (2010)

    Google Scholar 

  65. Vicente, J., Arcas, A., Julia-Hernandez, F. & Bautista, D. Synthesis, isolation, and characterization of an organometallic triiodopalladium(IV) complex. Quantitative and regioselective synthesis of two C–I reductive elimination products. Inorg. Chem. 50, 5339–5341 (2011)

    Google Scholar 

  66. Arnold, P. L., Sanford, M. S. & Pearson, S. M. Chelating N-heterocyclic carbene alkoxide as a supporting ligand for PdII/IV C-H bond functionalization catalysis. J. Am. Chem. Soc. 131, 13912–13913 (2009)

    Google Scholar 

  67. Ball, N. D. & Sanford, M. S. Synthesis and reactivity of a mono-σ-aryl palladium(IV) fluoride complex. J. Am. Chem. Soc. 131, 3796–3797 (2009)

    Google Scholar 

  68. Alsters, P. L. et al. Rigid five- and six-membered C,N,N′-bound aryl, benzyl, and alkyl organopalladium complexes: sp2 vs sp3 C-H activation during cyclopalladation and palladium(IV) intermediates in oxidative addition reactions with dihalogens and alkyl halides. Organometallics 12, 1831–1844 (1993)

    Google Scholar 

  69. Whitfield, S. R. & Sanford, M. S. Reactivity of Pd(II) complexes with electrophilic chlorinating reagents: isolation of Pd(IV) products and observation of C–Cl bond-forming reductive elimination. J. Am. Chem. Soc. 129, 15142–15143 (2007)

    Google Scholar 

  70. Furuya, T. et al. Mechanism of C–F reductive elimination from palladium(IV) fluoride. J. Am. Chem. Soc. 132, 3793–3807 (2010)

    Google Scholar 

  71. Powers, D. C., Xiao, D. Y., Geibel, M. A. L. & Ritter, T. On the mechanism of palladium-catalyzed aromatic C–H oxidation. J. Am. Chem. Soc. 132, 14530–14536 (2010)This paper describes mechanistic studies implicating a Pd( iii ) dimer intermediate in a palladium-catalysed carbon–hydrogen chlorination reaction described in ref. 85.

    Google Scholar 

  72. Sehnal, P., Taylor, R. J. K. & Fairlamb, I. J. S. Emergence of palladium(IV) chemistry in synthesis and catalysis. Chem. Rev. 110, 824–889 (2010)

    Google Scholar 

  73. Lyons, T. W. & Sanford, M. S. Palladium-catalyzed ligand-directed C–H functionalization reactions. Chem. Rev. 110, 1147–1169 (2010)This is a comprehensive review of palladium-catalysed, ligand-directed carbon–hydrogen functionalization reactions.

    Google Scholar 

  74. Wu, T., Yin, G. & Liu, G. Palladium-catalyzed intramolecular aminofluorination of unactivated alkenes. J. Am. Chem. Soc. 131, 16354–16355 (2009)

    Google Scholar 

  75. Michael, F. E., Sibbald, P. A. & Cochran, B. M. Palladium-catalyzed intramolecular chloroamination of alkenes. Org. Lett. 10, 793–796 (2008)

    Google Scholar 

  76. Kalyani, D., Satterfield, A. D. & Sanford, M. S. Palladium-catalyzed oxidative arylhalogenation of alkenes: synthetic scope and mechanistic insights. J. Am. Chem. Soc. 132, 8419–8427 (2010)This paper describes high-valent palladium-catalysed arylhalogenation reactions of α-alkenes and demonstrates complementarity to low-valent methods.

    Google Scholar 

  77. Oestreich, M., ed. The Mizoroki-Heck Reaction (Wiley, 2009)

  78. Müller, K., Faeh, C. & Diederich, F. Fluorine in pharmaceuticals: looking beyond intuition. Science 317, 1881–1886 (2007)

    Google Scholar 

  79. Grushin, V. V. The organometallic fluorine chemistry of palladium and rhodium: studies toward aromatic fluorination. Acc. Chem. Res. 43, 160–171 (2010)

    Google Scholar 

  80. Cho, E. J. et al. The palladium-catalyzed trifluoromethylation of aryl chlorides. Science 328, 1679–1681 (2010)

    Google Scholar 

  81. Ball, N. D., Gary, J. B., Ye, Y. & Sanford, M. S. Mechanistic and computational studies of oxidatively-induced bond-formation at Pd: rational design of room temperature trifluoromethylation. J. Am. Chem. Soc. 133, 7577–7584 (2011)

    Google Scholar 

  82. Wang, X., Truesdale, L. & Yu, J.-Q. Pd(II)-catalyzed ortho-trifluoromethylation of arenes using TFA as a promoter. J. Am. Chem. Soc. 132, 3648–3649 (2010)This paper reports a novel carbon–hydrogen trifluoromethylation reaction catalysed by putative high-valent palladium.

    Google Scholar 

  83. Ye, Y., Ball, N. D., Kampf, J. W. & Sanford, M. S. Oxidation of catalytically relevant palladium dimer with “CF3+”: formation and reactivity of a monomeric palladium(IV) aquo product. J. Am. Chem. Soc. 132, 14682–14687 (2010)This paper provides evidence supporting the possibility of a high-valent Pd( iv ) intermediate in the carbon–hydrogen trifluoromethylation reaction described in ref. 82.

    Google Scholar 

  84. Powers, D. C., Geibel, M. A. L., Klein, J. E. M. N. & Ritter, T. Bimetallic palladium catalysis: direct observation of Pd(III)-Pd(III) intermediates. J. Am. Chem. Soc. 131, 17050–17051 (2009)

    Google Scholar 

  85. Dick, A. R., Hull, K. L. & Sanford, M. S. A highly selective catalytic method for the oxidative functionalization of C-H bonds. J. Am. Chem. Soc. 126, 2300–2301 (2004)

    Google Scholar 

  86. Xu, J. et al. Copper-catalyzed trifluoromethylation of aryl boronic acids using a CF3+ reagent. Chem. Commun. (Camb.) 47, 4300–4302 (2011)

    Google Scholar 

  87. Deprez, N. R., Kalyani, D., Krause, A. & Sanford, M. S. Room temperature palladium-catalyzed 2-arylation of indoles. J. Am. Chem. Soc. 128, 4972–4973 (2006)

    Google Scholar 

  88. Phipps, R. J., Grimster, N. P. & Gaunt, M. J. Cu(II)-catalyzed direct and site-selective arylation of indoles under mild conditions. J. Am. Chem. Soc. 130, 8172–8174 (2008)

    Google Scholar 

  89. Zhang, J., Khaskin, E., Anderson, N. P., Zavalij, P. Y. & Vedernikov, A. N. Catalytic aerobic oxidation of substituted 8-methylquinolines in PdII-2,6-pyridine dicarboxylic acid systems. Chem. Commun. (Camb.) 3625–3627 (2008)

  90. Zhang, Y.-H. & Yu, J.-Q. Pd(II)-catalyzed hydroxylation of arenes with 1 atm O2 or air. J. Am. Chem. Soc. 131, 14654–14655 (2009)

    Google Scholar 

  91. Hull, K. L., Lanni, E. L. & Sanford, M. S. Highly regioselective catalytic oxidative coupling reactions: synthetic scope and mechanistic insights. J. Am. Chem. Soc. 128, 14047–14049 (2006)

    Google Scholar 

  92. Rosewall, C. F., Sibbald, P. A., Liskin, D. V. & Michael, F. E. Palladium-catalyzed carboamination of alkenes promoted by N-fluorobenzenesulfonimide via C–H activation of arenes. J. Am. Chem. Soc. 131, 9488–9489 (2009)

    Google Scholar 

  93. Hickman, A. J. &. Sanford, M. S. Catalyst control of site selectivity in the PdII/IV-catalyzed direct arylation of naphthalene. ACS Catal. 1, 170–174 (2011)

    Google Scholar 

  94. Racowski, J. M., Ball, N. D. & Sanford, M. S. C–H bond activation at palladium(IV) centers. J. Am. Chem. Soc. 133, 18022–18025 (2011)

    Google Scholar 

  95. Grove, D. M., van Koten, F., Zoet, R., Murrall, N. W. & Welch, A. J. Unique stable organometallic nickel(III) complexes; syntheses and the molecular structure of [Ni[C6H3(CH2NMe2)2-2,6]I2]. J. Am. Chem. Soc. 105, 1379–1380 (1983)

    Google Scholar 

  96. Ceder, R. M., Granell, J. & Muller, G. Preparation of five-membered nickelacycles with anionic C-N-N′ terdentate ligands. X-ray crystal structure of [NiCl{2-(CH = NCH2CH2NMe2)-3-ClC6H3}]. Organometallics 15, 4618–4624 (1996)

    Google Scholar 

  97. Higgs, A. T., Zinn, P. J., Simmons, S. J. & Sanford, M. S. Oxidatively induced carbon-halogen bond-forming reactions at nickel. Organometallics 28, 6142–6144 (2009)

    Google Scholar 

  98. Muñiz, K. & Streuff, J. Exploring the nickel-catalyzed oxidation of alkenes: a diamination by sulfanamide transfer. Angew. Chem. Int. Ed. 46, 7125–7127 (2007)

    Google Scholar 

  99. Lin, B. L., Clough, C. R. & Hillhouse, G. L. Interactions of aziridines with nickel complexes: oxidative-addition and reductive-elimination reactions that break and make C−N bonds. J. Am. Chem. Soc. 124, 2890–2891 (2002)

    Google Scholar 

  100. Tang, P. & Furuya, T. &. Ritter, T. Silver-catalyzed late-stage fluorination. J. Am. Chem. Soc. 132, 12150–12154 (2010)

    Google Scholar 

Download references

Acknowledgements

The work of the group of M.S.S. described herein was supported by the NIH-NIGMS (GM073836) and by the US NSF (CHE-0545909 and CHE-1111563).

Author information

Authors and Affiliations

Authors

Contributions

A.J.H. and M.S.S. worked together to outline the content, as well as write and edit the manuscript, references and figures.

Corresponding author

Correspondence to Melanie S. Sanford.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hickman, A., Sanford, M. High-valent organometallic copper and palladium in catalysis. Nature 484, 177–185 (2012). https://doi.org/10.1038/nature11008

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature11008

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing