Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Ubiquitin-dependent regulation of COPII coat size and function

Abstract

Packaging of proteins from the endoplasmic reticulum into COPII vesicles is essential for secretion. In cells, most COPII vesicles are approximately 60–80 nm in diameter, yet some must increase their size to accommodate 300–400 nm procollagen fibres or chylomicrons. Impaired COPII function results in collagen deposition defects, cranio-lenticulo-sutural dysplasia, or chylomicron retention disease, but mechanisms to enlarge COPII coats have remained elusive. Here, we identified the ubiquitin ligase CUL3–KLHL12 as a regulator of COPII coat formation. CUL3–KLHL12 catalyses the monoubiquitylation of the COPII-component SEC31 and drives the assembly of large COPII coats. As a result, ubiquitylation by CUL3–KLHL12 is essential for collagen export, yet less important for the transport of small cargo. We conclude that monoubiquitylation controls the size and function of a vesicle coat.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: CUL3 regulates mouse ES cell morphology.
Figure 2: KLHL12 is a substrate adaptor for CUL3 in mouse ES cells.
Figure 3: CUL3–KLHL12 monoubiquitylates SEC31.
Figure 4: CUL3–KLHL12-dependent monoubiquitylation enlarges COPII-structures.
Figure 5: CUL3–KLHL12 promotes collagen export.

Similar content being viewed by others

References

  1. Leitinger, B. Transmembrane collagen receptors. Annu. Rev. Cell Dev. Biol. 27, 265–290 (2011)

    Article  CAS  Google Scholar 

  2. Wickström, S. A., Radovanac, K. & Fassler, R. Genetic analyses of integrin signaling. Cold Spring Harb. Perspect. Biol. 10.1101/cshperspect.a005116 (30 December 2010)

  3. Caswell, P. T., Vadrevu, S. & Norman, J. C. Integrins: masters and slaves of endocytic transport. Nature Rev. Mol. Cell Biol. 10, 843–853 (2009)

    Article  CAS  Google Scholar 

  4. Stephens, L. E. et al. Deletion of beta 1 integrins in mice results in inner cell mass failure and peri-implantation lethality. Genes Dev. 9, 1883–1895 (1995)

    Article  CAS  Google Scholar 

  5. Chen, S. S., Fitzgerald, W., Zimmerberg, J., Kleinman, H. K. & Margolis, L. Cell-cell and cell-extracellular matrix interactions regulate embryonic stem cell differentiation. Stem Cells 25, 553–561 (2007)

    Article  CAS  Google Scholar 

  6. Lang, M. R., Lapierre, L. A., Frotscher, M., Goldenring, J. R. & Knapik, E. W. Secretory COPII coat component Sec23a is essential for craniofacial chondrocyte maturation. Nature Genet. 38, 1198–1203 (2006)

    Article  CAS  Google Scholar 

  7. Townley, A. K. et al. Efficient coupling of Sec23–Sec24 to Sec13–Sec31 drives COPII-dependent collagen secretion and is essential for normal craniofacial development. J. Cell Sci. 121, 3025–3034 (2008)

    Article  CAS  Google Scholar 

  8. Sarmah, S. et al. Sec24D-dependent transport of extracellular matrix proteins is required for zebrafish skeletal morphogenesis. PLoS ONE 5, e10367 (2010)

    Article  ADS  Google Scholar 

  9. Ohisa, S., Inohaya, K., Takano, Y. & Kudo, A. sec24d encoding a component of COPII is essential for vertebra formation, revealed by the analysis of the medaka mutant, vbi. Dev. Biol. 342, 85–95 (2010)

    Article  CAS  Google Scholar 

  10. Boyadjiev, S. A. et al. Cranio-lenticulo-sutural dysplasia is caused by a SEC23A mutation leading to abnormal endoplasmic-reticulum-to-Golgi trafficking. Nature Genet. 38, 1192–1197 (2006)

    Article  CAS  Google Scholar 

  11. Fromme, J. C. et al. The genetic basis of a craniofacial disease provides insight into COPII coat assembly. Dev. Cell 13, 623–634 (2007)

    Article  CAS  Google Scholar 

  12. Jensen, D. & Schekman, R. COPII-mediated vesicle formation at a glance. J. Cell Sci. 124, 1–4 (2011)

    Article  CAS  Google Scholar 

  13. Stagg, S. M. et al. Structural basis for cargo regulation of COPII coat assembly. Cell 134, 474–484 (2008)

    Article  CAS  Google Scholar 

  14. Fath, S., Mancias, J. D., Bi, X. & Goldberg, J. Structure and organization of coat proteins in the COPII cage. Cell 129, 1325–1336 (2007)

    Article  CAS  Google Scholar 

  15. Fromme, J. C. & Schekman, R. COPII-coated vesicles: flexible enough for large cargo? Curr. Opin. Cell Biol. 17, 345–352 (2005)

    Article  CAS  Google Scholar 

  16. Saito, K. et al. TANGO1 facilitates cargo loading at endoplasmic reticulum exit sites. Cell 136, 891–902 (2009)

    Article  CAS  Google Scholar 

  17. Saito, K. et al. cTAGE5 mediates collagen secretion through interaction with TANGO1 at endoplasmic reticulum exit sites. Mol. Biol. Cell 22, 2301–2308 (2011)

    Article  CAS  Google Scholar 

  18. Wilson, D. G. et al. Global defects in collagen secretion in a Mia3/TANGO1 knockout mouse. J. Cell Biol. 193, 935–951 (2011)

    Article  CAS  Google Scholar 

  19. Kathiresan, S. et al. Genome-wide association of early-onset myocardial infarction with single nucleotide polymorphisms and copy number variants. Nature Genet. 41, 334–341 (2009); corrigendum. 41, 762 (2009)

  20. Sumara, I. et al. A Cul3-based E3 ligase removes Aurora B from mitotic chromosomes, regulating mitotic progression and completion of cytokinesis in human cells. Dev. Cell 12, 887–900 (2007)

    Article  CAS  Google Scholar 

  21. Shaw, L. M., Rabinovitz, I., Wang, H. H., Toker, A. & Mercurio, A. M. Activation of phosphoinositide 3-OH kinase by the α6β4 integrin promotes carcinoma invasion. Cell 91, 949–960 (1997)

    Article  CAS  Google Scholar 

  22. Chen, Y. et al. Cullin mediates degradation of RhoA through evolutionarily conserved BTB adaptors to control actin cytoskeleton structure and cell movement. Mol. Cell 35, 841–855 (2009)

    Article  CAS  Google Scholar 

  23. Furukawa, M. & Xiong, Y. BTB protein Keap1 targets antioxidant transcription factor Nrf2 for ubiquitination by the Cullin 3-Roc1 ligase. Mol. Cell. Biol. 25, 162–171 (2005)

    Article  CAS  Google Scholar 

  24. Geyer, R., Wee, S., Anderson, S., Yates, J. & Wolf, D. A. BTB/POZ domain proteins are putative substrate adaptors for cullin 3 ubiquitin ligases. Mol. Cell 12, 783–790 (2003)

    Article  CAS  Google Scholar 

  25. Pintard, L. et al. The BTB protein MEL-26 is a substrate-specific adaptor of the CUL-3 ubiquitin-ligase. Nature 425, 311–316 (2003)

    Article  CAS  ADS  Google Scholar 

  26. Xu, L. et al. BTB proteins are substrate-specific adaptors in an SCF-like modular ubiquitin ligase containing CUL-3. Nature 425, 316–321 (2003)

    Article  CAS  ADS  Google Scholar 

  27. Young, R. A. Control of the embryonic stem cell state. Cell 144, 940–954 (2011)

    Article  CAS  Google Scholar 

  28. Hughes, H. et al. Organisation of human ER-exit sites: requirements for the localisation of Sec16 to transitional ER. J. Cell Sci. 122, 2924–2934 (2009)

    Article  CAS  Google Scholar 

  29. Kim, W. et al. Systematic and quantitative assessment of the ubiquitin-modified proteome. Mol. Cell 44, 325–340 (2011)

    Article  CAS  Google Scholar 

  30. Emanuele, M. J. et al. Global identification of modular cullin-RING ligase substrates. Cell 147, 459–474 (2011)

    Article  CAS  Google Scholar 

  31. Stephens, D. J. & Pepperkok, R. Imaging of procollagen transport reveals COPI-dependent cargo sorting during ER-to-Golgi transport in mammalian cells. J. Cell Sci. 115, 1149–1160 (2002)

    CAS  Google Scholar 

  32. Zhu, W. et al. Bcl-2 mutants with restricted subcellular location reveal spatially distinct pathways for apoptosis in different cell types. EMBO J. 15, 4130–4141 (1996)

    Article  CAS  Google Scholar 

  33. Singer, J. D., Gurian-West, M., Clurman, B. & Roberts, J. M. Cullin-3 targets cyclin E for ubiquitination and controls S phase in mammalian cells. Genes Dev. 13, 2375–2387 (1999)

    Article  CAS  Google Scholar 

  34. Uchida, K. et al. Identification of specific autoantigens in Sjogren’s syndrome by SEREX. Immunology 116, 53–63 (2005)

    Article  CAS  Google Scholar 

  35. Angers, S. et al. The KLHL12–Cullin-3 ubiquitin ligase negatively regulates the Wnt–β-catenin pathway by targeting Dishevelled for degradation. Nature Cell Biol. 8, 348–357 (2006)

    Article  CAS  Google Scholar 

  36. Schäfer, M. & Werner, S. Cancer as an overhealing wound: an old hypothesis revisited. Nature Rev. Mol. Cell Biol. 9, 628–638 (2008)

    Article  Google Scholar 

  37. Nguyen, D. X., Bos, P. D. & Massague, J. Metastasis: from dissemination to organ-specific colonization. Nature Rev. Cancer 9, 274–284 (2009)

    Article  CAS  Google Scholar 

  38. Zhang, X. H. et al. Latent bone metastasis in breast cancer tied to Src-dependent survival signals. Cancer Cell 16, 67–78 (2009)

    Article  CAS  Google Scholar 

  39. Geddis, A. E. & Prockop, D. J. Expression of human COL1A1 gene in stably transfected HT1080 cells: the production of a thermostable homotrimer of type I collagen in a recombinant system. Matrix 13, 399–405 (1993)

    Article  CAS  Google Scholar 

  40. Williamson, A. et al. Identification of a physiological E2 module for the human anaphase-promoting complex. Proc. Natl Acad. Sci. USA 106, 18213–18218 (2009)

    Article  CAS  ADS  Google Scholar 

Download references

Acknowledgements

We thank B. Schulman for advice and gifts of cDNAs and proteins. We are grateful to J. Schaletzky for critically reading the manuscript and many discussions. We thank the members of the Rape and Schekman labs for advice and suggestions, L. Lim for providing Cul3-shRNAs, C. Glazier for contributions on BTB protein cloning, and A. Fischer and M. Richner for tissue culture support. This work was funded by grants from the Pew Foundation (M.R.), the NIH (NIGMS-RO1, M.R.; NIH Director’s New Innovator Award, M.R.), and the Howard Hughes Medical Institute (R.S.). L.J. was funded by a CIRM predoctoral fellowship; she is a Tang fellow. K.B.P. is an HFSP long term post-doctoral fellow.

Author information

Authors and Affiliations

Authors

Contributions

Experiments were designed by L.J., K.B.P., R.S. and M.R.; L.J. performed the mouse ES cell screen, identified KLHL12 and SEC31, and analysed the role of CUL3 in COPII formation in cells and in collagen export in mouse ES cells; K.B.P. analysed collagen export in fibroblasts; K.E.W. analysed COPII formation in cells; C.B. identified inactive KLHL12; A.G. performed electron micrscopy; L.J., K.B.P. and M.R. prepared the manuscript.

Corresponding author

Correspondence to Michael Rape.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Figures 1-8 with legends, Supplementary Methods and Supplementary Tables 1-2. (PDF 5604 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jin, L., Pahuja, K., Wickliffe, K. et al. Ubiquitin-dependent regulation of COPII coat size and function. Nature 482, 495–500 (2012). https://doi.org/10.1038/nature10822

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature10822

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing