Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

G-protein-coupled receptor inactivation by an allosteric inverse-agonist antibody

Abstract

G-protein-coupled receptors are the largest class of cell-surface receptors, and these membrane proteins exist in equilibrium between inactive and active states1,2,3,4,5,6,7,8,9,10,11,12,13. Conformational changes induced by extracellular ligands binding to G-protein-coupled receptors result in a cellular response through the activation of G proteins. The A2A adenosine receptor (A2AAR) is responsible for regulating blood flow to the cardiac muscle and is important in the regulation of glutamate and dopamine release in the brain14. Here we report the raising of a mouse monoclonal antibody against human A2AAR that prevents agonist but not antagonist binding to the extracellular ligand-binding pocket, and describe the structure of A2AAR in complex with the antibody Fab fragment (Fab2838). This structure reveals that Fab2838 recognizes the intracellular surface of A2AAR and that its complementarity-determining region, CDR-H3, penetrates into the receptor. CDR-H3 is located in a similar position to the G-protein carboxy-terminal fragment in the active opsin structure1 and to CDR-3 of the nanobody in the active β2-adrenergic receptor structure2, but locks A2AAR in an inactive conformation. These results suggest a new strategy to modulate the activity of G-protein-coupled receptors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Effect of Fab2838 on A 2A AR–ligand binding.
Figure 2: Structure of the A 2A AR–Fab2838 complex.
Figure 3: Comparison of the structures of the opsin–GαCT, β 2 AR–Nb80 and A 2A AR–Fab2838 complexes.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Data deposits

Atomic coordinates and structure factors for the A2AAR–Fab structure have been deposited in the Protein Data Bank under the accession codes 3VG9 (2.7Å) and 3VGA (3.1Å).

References

  1. Scheerer, P. et al. Crystal structure of opsin in its G-protein-interacting conformation. Nature 455, 497–502 (2008)

    Article  ADS  CAS  Google Scholar 

  2. Rasmussen, S. G. F. et al. Structure of a nanobody-stabilized active state of the β2 adrenoceptor. Nature 469, 175–180 (2011)

    Article  ADS  CAS  Google Scholar 

  3. Palczewski, K. et al. Crystal structure of rhodopsin: a G protein-coupled receptor. Science 289, 739–745 (2000)

    Article  ADS  CAS  Google Scholar 

  4. Shimamura, T. et al. Crystal structure of squid rhodopsin with intracellularly extended cytoplasmic region. J. Biol. Chem. 283, 17753–17756 (2008)

    Article  CAS  Google Scholar 

  5. Murakami, M. & Kouyama, T. Crystal structure of squid rhodopsin. Nature 453, 363–367 (2008)

    Article  ADS  CAS  Google Scholar 

  6. Warne, T. et al. Structure of a β1-adrenergic G-protein-coupled receptor. Nature 454, 486–491 (2008)

    Article  ADS  CAS  Google Scholar 

  7. Rasmussen, S. G. F. et al. Crystal structure of the human β2 adrenergic G-protein-coupled receptor. Nature 450, 383–387 (2007)

    Article  ADS  CAS  Google Scholar 

  8. Cherezov, V. et al. High-resolution crystal structure of an engineered human β2-adrenergic G protein-coupled receptor. Science 318, 1258–1265 (2007)

    Article  ADS  CAS  Google Scholar 

  9. Jaakola, V.-P. et al. The 2.6 angstrom crystal structure of a human A2A adenosine receptor bound to an antagonist. Science 322, 1211–1217 (2008)

    Article  ADS  CAS  Google Scholar 

  10. Wu, B. et al. Structures of the CXCR4 chemokine GPCR with small-molecule and cyclic peptide antagonists. Science 330, 1066–1071 (2010)

    Article  ADS  CAS  Google Scholar 

  11. Shimamura, T. et al. Structure of the human histamine H1 receptor complex with doxepin. Nature 475, 65–70 (2011)

    Article  CAS  Google Scholar 

  12. Chien, E. Y. T. et al. Structure of the human dopamine D3 receptor in complex with a D2/D3 selective antagonist. Science 330, 1091–1095 (2010)

    Article  ADS  CAS  Google Scholar 

  13. Rasmussen, S. G. F. et al. Crystal structure of the β2 adrenergic receptor–Gs protein complex. Nature 477, 549–555 (2011)

    Article  ADS  CAS  Google Scholar 

  14. Fredholm, B. B., Chen, J. F., Masino, S. A. & Vaugeois, J. M. Actions of adenosine at its receptors in the CNS: insights from knockouts and drugs. Annu. Rev. Pharmacol. Toxicol. 45, 385–412 (2005)

    Article  CAS  Google Scholar 

  15. Müller, C. E. & Jacobson, K. A. Recent developments in adenosine receptor ligands and their potential as novel drugs. Biochim. Biophys. Acta 1808, 1290–1308 (2011)

    Article  Google Scholar 

  16. Xu, F. et al. Structure of an agonist-bound human A2A adenosine receptor. Science 332, 322–327 (2011)

    Article  ADS  CAS  Google Scholar 

  17. Ballesteros, J. A. &. Weinstein, H. Integrated methods for the construction of three-dimensional models and computational probing of structure-function relations in G protein-coupled receptors. Methods Neurosci. 25, 366–428 (1995)

  18. Lebon, G. et al. Agonist-bound adenosine A2A receptor structures reveal common features of GPCR activation. Nature 474, 521–525 (2011)

    Article  CAS  Google Scholar 

  19. Doré, A. S. et al. Structure of the adenosine A2A receptor in complex with ZM241385 and the xanthines XAC and caffeine. Structure 19, 1283–1293 (2011)

    Article  Google Scholar 

  20. Chung, K. Y. et al. Conformational changes in the G protein Gs induced by the β2 adrenergic receptor. Nature 477, 611–615 (2011)

    Article  ADS  CAS  Google Scholar 

  21. Yao, X. J. et al. The effect of ligand efficacy on the formation and stability of a GPCR-G protein complex. Proc. Natl Acad. Sci. USA 106, 9501–9506 (2009)

    Article  ADS  CAS  Google Scholar 

  22. Warne, T. et al. The structural basis for agonist and partial agonist action on a β1-adrenergic receptor. Nature 469, 241–244 (2011)

    Article  ADS  CAS  Google Scholar 

  23. Rosenbaum, D. M. et al. Structure and function of an irreversible agonist-β2 adrenoceptor complex. Nature 469, 236–240 (2011)

    Article  ADS  CAS  Google Scholar 

  24. Yurugi-Kobayashi, T. et al. Comparison of functional non-glycosylated GPCRs expression in Pichia pastoris. Biochem. Biophys. Res. Commun. 380, 271–276 (2009)

    Article  CAS  Google Scholar 

  25. Köhler, G. & Milstein, C. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 256, 495–497 (1975)

    Article  ADS  Google Scholar 

  26. Warne, T., Chirnside, J. & Schertler, G. F. X. Expression and purification of truncated, non-glycosylated turkey β-adrenergic receptors for crystallization. Biochim. Biophys. Acta 1610, 133–140 (2003)

    Article  CAS  Google Scholar 

  27. Collaborative Computational Project, Number 4. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D 50, 760–763 (1994)

  28. McCoy, A. J. et al. Phaser crystallographic software. J. Appl. Crystallogr. 40, 658–674 (2007)

    Article  CAS  Google Scholar 

  29. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D 60, 2126–2132 (2004)

    Article  Google Scholar 

  30. Murshudov, G. N., Vagin, A. A. & Dodson, E. J. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. D 53, 240–255 (1997)

    Article  CAS  Google Scholar 

  31. Afonine, P. V., Grosse-Kunstleve, R. W. & Adams, P. D. A robust bulk-solvent correction and anisotropic scaling procedure. Acta Crystallogr. D 61, 850–855 (2005)

    Article  Google Scholar 

  32. Laskowski, R. A., MacArthur, M. W. & Thornton, J. M. Validation of protein models derived from experiment. Curr. Opin. Struct. Biol. 8, 631–639 (1998)

    Article  CAS  Google Scholar 

  33. Chen, V. B. et al. MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr. D 66, 12–21 (2010)

    Article  CAS  Google Scholar 

  34. Yang, Z. R., Thomson, R., McNeil, P. & Esnouf, R. M. RONN: the bio-basis function neural network technique applied to the detection of natively disordered regions in proteins. Bioinformatics 21, 3369–3376 (2005)

    Article  CAS  Google Scholar 

  35. DeLano, W. L. The PyMOL Molecular Graphics System 〈http://www.pymol.org〉 (2002)

Download references

Acknowledgements

This work was supported by the ERATO Human Receptor Crystallography Project of the Japan Science and Technology Agency (S.I.), by the Targeted Proteins Research Program of MEXT, Japan (S.I.), and by Development of New Functional Antibody Technologies (New Energy and Industrial Technology Development Organization, Japan) (T. Hamakubo). It was also partly funded by the Biotechnology and Biological Sciences Research Council (BB/G023425/1) (S.I.). The work was partly performed in the Membrane Protein Laboratory funded by the Wellcome Trust (grant 062164/Z/00/Z) (S.I.) at the Diamond Light Source, UK. Data were collected at Diamond Light Source beamline I24 with the assistance of G. Evans, R. Owen, D. Axford and J. Aishima.

Author information

Authors and Affiliations

Authors

Contributions

S.I. and T.M. designed the original research project. T.Y.-K. and T.K. established the A2AAR expression and purification protocols. T. Hino and C.I.-S. expressed, purified and characterized the receptor. H.I., Y.N.-N., O.K.-A. and T. Hamakubo performed the immunization, selection and isolation of antibodies. T. Hino, T.A. and C.I.-S. purified and characterized antibodies. N.N. sequenced antibodies. T. Hino, T.A. and T.S. purified and crystallized the receptor/Fab-fragment complex. S.W., A.D.C. and S.I. performed data collection. T. Hino solved and refined the structure. T. Hino, S.I. and T.M. wrote the manuscript and all authors provide editorial input. The project was managed by T.K., T. Hamakubo, S.I. and T.M.

Corresponding authors

Correspondence to So Iwata or Takeshi Murata.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Figures 1-11 with legends, Supplementary Tables 1-2 and a Supplementary Discussion. (PDF 3397 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hino, T., Arakawa, T., Iwanari, H. et al. G-protein-coupled receptor inactivation by an allosteric inverse-agonist antibody. Nature 482, 237–240 (2012). https://doi.org/10.1038/nature10750

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature10750

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing