Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Tunnel field-effect transistors as energy-efficient electronic switches

Abstract

Power dissipation is a fundamental problem for nanoelectronic circuits. Scaling the supply voltage reduces the energy needed for switching, but the field-effect transistors (FETs) in today's integrated circuits require at least 60 mV of gate voltage to increase the current by one order of magnitude at room temperature. Tunnel FETs avoid this limit by using quantum-mechanical band-to-band tunnelling, rather than thermal injection, to inject charge carriers into the device channel. Tunnel FETs based on ultrathin semiconducting films or nanowires could achieve a 100-fold power reduction over complementary metal–oxide–semiconductor (CMOS) transistors, so integrating tunnel FETs with CMOS technology could improve low-power integrated circuits.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Power challenge and main characteristics of an energy-efficient tunnel FET.
Figure 2: Principle of operation of a TFET.
Figure 3: Band diagrams of heterostructure C-TFETs.
Figure 4: Importance of the material system on TFET performance.
Figure 5: Implementation of all-Si technology boosters.
Figure 6: InAs–Si heterojunction diodes and TFETs for improved performance.
Figure 7: Circuit-level characteristics of low-power TFETs.

Similar content being viewed by others

References

  1. Sakurai, T. Perspectives of low power VLSI's. IEICE Trans. Electron E87-C, 429–436 (IEICE, 2004).

    Google Scholar 

  2. Bernstein, K., Cavin, R. K., Porod, W., Seabaugh A. C. & Welser, J. Device and architectures outlook for beyond CMOS switches. Proc. IEEE 98, 2169–2184 (2010).

    Article  Google Scholar 

  3. Seabaugh, A. C. & Zhang, Q. Low voltage tunnel transistors for beyond CMOS logic. Proc. IEEE 98, 2095–2110 (2010).

    Article  CAS  Google Scholar 

  4. Sze, S. M. Physics of Semiconductor Devices, 1st edn (John Wiley, 1969).

    Google Scholar 

  5. Lundstrom, M. S. The MOSFET revisited: device physics and modeling at the nanoscale. Proc. IEEE Int. SOI Conf. 1–3 (IEEE, 2006).

    Google Scholar 

  6. Kim, D. et al. Heterojunction tunneling transistor (HETT)-based extremely low power applications. Proc. Int. Symp. Low Power Electron. Design 219–224 (IEEE/ACM, 2009).

    Google Scholar 

  7. Bhuwalka, K., Schultze, J. & Eisele, I. A simulation approach to optimize the electrical parameters of a vertical tunnel FET. IEEE Trans. Electron Devices 52, 1541–1547 (2005).

    Article  ADS  Google Scholar 

  8. Boucart, K. & Ionescu, A. M. Double-gate tunnel FET with high-κ gate dielectric. IEEE Trans. Electron Devices 54, 1725–1733 (2007).

    Article  CAS  ADS  Google Scholar 

  9. Kam, H., King-Liu, T.-J., Alon, E. & Horowitz, M. Circuit-level requirements for MOSFET-replacement devices. Tech. Digest IEEE Int. Electron Devices Meet. 1 (IEEE, 2008).

    Google Scholar 

  10. Hanson, S., Seok, M., Sylvester, D. & Blaauw, D. Nanometer device scaling in subthrehold logic and SRAM. IEEE Trans. Electron Devices 55, 175–185 (2008).

    Article  ADS  Google Scholar 

  11. Chang, L. et al. Practical strategies for power-efficient computing technologies. Proc. IEEE 98, 215–236 (2010).

    Article  Google Scholar 

  12. Nose, K. & Sakurai, T. Optimization of V DD and V TH for low-power and high-speed applications. Proc. Asia S. Pacif. Design Automat. Conf. 469–474 (ACM, 2000).

    Google Scholar 

  13. Gopalakrishnan, K., Griffin, P. B. & Plummer, J. D. I-MOS: a novel semiconductor device with subthreshold slope lower than kT/q. Tech. Digest IEEE Int. Electron Devices Meet. 289–292 (IEEE, 2002).

    Book  Google Scholar 

  14. Zener, C. A theory of electrical breakdown of solid dielectrics. Proc. R. Soc. Lond. A 145, 523–529 (1934).

    Article  CAS  ADS  Google Scholar 

  15. Salahuddin, S. & Datta, S. Use of negative capacitance to provide voltage amplification for low power nanoscale devices. Nano Lett. 8, 405–410 (2008).

    Article  CAS  ADS  Google Scholar 

  16. Salvatore, G. A., Bouvet, D. & Ionescu, A. M. Demonstration of subthreshold swing smaller than 60mV/decade in Fe-FET with P(VDF-TrFE)/SiO2 gate stack. Tech. Digest IEEE Int. Electron Devices Meet. 1–4 (IEEE, 2008).

    Google Scholar 

  17. Rusu, A., Salvatore, G. A., Jimenez, D. & Ionescu, A. M. Metal-ferroelectric-meta-oxide-semiconductor field effect transistor with sub-60mV/decade subthreshold swing and internal voltage amplification. IEEE Int. Electron Devices Meet. 16.3.1–16.3.4 (IEEE, 2010).

    Google Scholar 

  18. Abele, N. et al. Suspended-gate MOSFET: bringing new MEMS functionality into solid-state MOS transistor. Tech. Digest IEEE Int. Electron Devices Meet. 479–481 (IEEE, 2005).

    Google Scholar 

  19. Chen, F. et al. Integrated circuit design with NEM relays. IEEE/ACM Int. Conf. Computer-Aided Design 750–757 (IEEE, 2008).

    Google Scholar 

  20. Pott, V., Hei Kam, N. R., Jaeseok, J., Alon, E. & Tsu-Jae, K. L. Mechanical computing redux: relays for integrated circuit applications. Proc. IEEE 98, 2076–2094 (2010).

    Article  CAS  Google Scholar 

  21. Quinn, J., Kawamoto, G. & McCombe, B. Subband spectroscopy by surface channel tunneling. Surf. Sci. 73, 190–196 (1978).

    Article  CAS  ADS  Google Scholar 

  22. Banerjee, S., Richardson W., Coleman J. & Chatterjee, A. A new three-terminal tunnel device. IEEE Electron Device Lett. 8, 347–349 (1987).

    Article  ADS  Google Scholar 

  23. Takeda, E., Matsuoka, H., Igura, Y. & Asai, S. A band to band tunneling MOS device B2T-MOSFET. Tech. Digest IEEE Int. Electron Devices Meet. 402–405 (IEEE, 1988).

    Book  Google Scholar 

  24. Baba, T. Proposal for surface tunnel transistors. Jpn. J. Appl. Phys. 31, L455–L457 (1992).

    Article  CAS  ADS  Google Scholar 

  25. Reddick, W. & Amaratunga, G. Silicon surface tunnel transistor. Appl. Phys. Lett. 67, 494–496 (1995).

    Article  CAS  ADS  Google Scholar 

  26. Koga, J. & Toriumi, A. Negative differential conductance in three-terminal silicon tunneling device. Appl. Phys. Lett. 69, 1435–1437 (1996).

    Article  CAS  ADS  Google Scholar 

  27. Hansch, W., Fink, C., Schulze, J. & Eisele, I. A vertical MOS-gated Esaki tunneling transistor in silicon. Thin Solid Films 369, 387–389 (2000).

    Article  CAS  ADS  Google Scholar 

  28. Aydin, C. et al. Lateral interband tunneling transistor in silicon-on-insulator. Appl. Phys. Lett. 84, 1780–1782 (2004).

    Article  CAS  ADS  Google Scholar 

  29. Appenzeller, J., Lin, Y.-M., Knoch J. & Avouris, P. Band-to-band tunneling in carbon nanotube field-effect transistors. Phys. Rev. Lett. 93, 196805 (2004).

    Article  CAS  ADS  Google Scholar 

  30. Krishnamohan, T., Kim, D., Raghunathan, S. & Saraswat, K. Double-gate strained-Ge heterostructure tunneling FET (TFET) with record high drive currents and <60 mV/dec subthreshold slope. Tech. Digest IEEE Int. Electron Devices Meet. 947–949 (IEEE, 2008).

    Google Scholar 

  31. Mayer, F. et al. Impact of SOI, Si1–xGexOI and GeOI substrates on CMOS compatible tunnel FET performance. Tech. Digest IEEE Int. Electron Devices Meet. 163–166 (IEEE, 2008).

    Google Scholar 

  32. Hu, C. et al. Prospect of tunneling green transistor for 0.1 V CMOS. IEEE Int. Electron Devices Meet. 16.1.1–16.1.4 (IEEE, 2010).

    Google Scholar 

  33. Moselund, K. E. et al. Comparison of VLS grown Si NW tunnel FETs with different gate stacks. Proc. Eur. Solid State Device Res. Conf. 448–451 (IEEE, 2009).

    Google Scholar 

  34. Wang, P. F. et al. Complementary tunneling transistor for low power application. Solid-State Electron. 48, 2281–2286 (2004).

    Article  CAS  ADS  Google Scholar 

  35. Knoch, J. & Appenzeller, J. A novel concept for field-effect transistors – the tunneling carbon nanotube FET. Digest Device Res. Conf. 153–156 (IEEE, 2006).

    Google Scholar 

  36. Knoch, J., Mantl, S. & Appenzeller, J. Impact of the dimensionality on the performance of tunneling FETs: bulk versus one-dimensional devices. Solid-State Electron. 51, 572–578 (2007).

    Article  CAS  ADS  Google Scholar 

  37. Zhang, Q., Zhao, W. & Seabaugh, A. Low-subthreshold-swing tunnel transistors. IEEE Electron Device Lett. 27, 297–300 (2006).

    Article  CAS  ADS  Google Scholar 

  38. Luisier, M. & Klimeck, G. Simulation of nanowire tunneling transistors: from the Wentzel–Kramers–Brillouin approximation to full-band phonon-assisted tunneling. J. Appl. Phys. 107, 084507 (2010).

    Article  ADS  Google Scholar 

  39. Appenzeller, J., Knoch, J., Björk, M. T., Riel, H. & Riess, W. Toward nanowire electronics. IEEE Trans. Electron Devices 55, 2827–2845 (2008).

    Article  CAS  ADS  Google Scholar 

  40. Ionescu, A. M., Boucart, K., Moselund, K. E. & Pott, V. Small Swing Switches (Cambridge Univ. Press, in the press).

  41. Leonelli, D. et al. Optimization of tunnel FETs: impact of gate oxide thickness, implantation and annealing conditions. Proc. Eur. Solid State Device Res. Conf. 170–173 (IEEE, 2010).

    Google Scholar 

  42. Boucart, K. & Ionescu, A. M. Length scaling of the double gate tunnel FET with a high-κ gate dielectric. Solid State Electron. 51, 1500–1507 (2007).

    Article  CAS  ADS  Google Scholar 

  43. Sandow, C., Knoch, J., Urban, C., Zhao, Q.-T. & Mantl, S. Impact of electrostatics and doping concentration on the performance of silicon tunnel field-effect transistors. Solid State Electron. 53, 1126–1129 (2009).

    Article  CAS  ADS  Google Scholar 

  44. Bhuwalka, K., Schulze, J. & Eisele, I. Performance enhancement of vertical tunnel field-effect transistor with SiGe in the dp+ layer. Jpn. J. Appl. Phys. 43, 4073–4078 (2004).

    Article  CAS  ADS  Google Scholar 

  45. Verhulst, A. et al. Complementary silicon-based heterostructure tunnel-FETs with high tunnel rates. IEEE Electron Device Lett. 29, 1398–1401 (2008).

    Article  CAS  ADS  Google Scholar 

  46. Knoch, J. Optimizing tunnel FET performance–impact of device structure, transistor dimensions and choice of material. Int. Symp. VLSI-TSA 45–46 (IEEE, 2009).

    Google Scholar 

  47. Knoch, J. & Appenzeller, J. Modeling of high-performance p-type III–V heterojunction tunnel FETs. IEEE Electron Device Lett. 31, 305–307 (2010).

    Article  CAS  ADS  Google Scholar 

  48. Koswatta, S. O., Koester, S. J. & Haensch, W. On the possibility of obtaining MOSFET-like performance and sub-60-mV/dec swing in 1-D broken-gap tunnel transistors. IEEE Trans. Electron Devices 57, 3222–3223 (2010).

    Article  CAS  ADS  Google Scholar 

  49. Hu, C. Green transistor as a solution to the IC power crisis. Proc. 9th Int. Conf. Solid-State Integrated-Circuit Technol. 16–20 (IEEE, 2008).

    Google Scholar 

  50. Hu, C. et al. Prospect of tunneling green transistor for 0.1 V CMOS. IEEE Int. Electron Devices Meet. 16.1.1–16.1.4 (IEEE, 2010).

    Google Scholar 

  51. Asra, R. et al. A tunnel FET for V DD scaling below 0.6V with a CMOS-comparable performance. IEEE Trans. Electron Devices 58, 1855–1863 (2011).

    Article  ADS  Google Scholar 

  52. De Michielis, L., Lattanzio, L., Palestri, P., Selmi L. & Ionescu, A. M. Tunnel-FET architecture with improved performance due to enhanced gate modulation of the tunneling barrier. IEEE Device Res. Conf. (IEEE, in the press).

  53. Nayfeh, O. M. et al. Design of tunneling field-effect transistors using strained-silicon/strained-germanium type-II staggered heterojunctions. IEEE Electron Device Lett. 29, 1074–1077 (2008).

    Article  CAS  ADS  Google Scholar 

  54. Boucart, K., Ionescu, A. M. & Riess, W. Asymmetrically strained all-silicon tunnel FETs featuring 1V operation. Proc. Eur. Solid State Device Res. Conf. 452–456 (IEEE, 2009).

    Google Scholar 

  55. Boucart, K., Riess, W. & Ionescu, A. M. Lateral strain profile as key technology booster for all-silicon tunnel FETs. IEEE Electron Device Lett. 30, 656–658 (2009).

    Article  CAS  ADS  Google Scholar 

  56. Boucart, K. Simulation of a Double Gate Silicon Tunnel FET with a High-κ Dielectric. PhD thesis, Ecole Polytechnoique Fédérale de Lausanne (2009).

  57. Le Royer, C. & Mayer, F. Exhaustive experimental study of tunnel field effect transistors (TFETs): from materials to architecture. Proc. 10th Int. Conf. Ultimate Integration Silicon 53–56 (IEEE, 2009).

    Google Scholar 

  58. Loh, W.-Y. et al. Sub-60nm Si tunnel field effect transistors with I on > 100 μA/ μm. Proc. Eur. Solid State Device Res. Conf. 162–165 (IEEE, 2010).

    Google Scholar 

  59. Mookerjea, S. et al. Experimental demonstration of 100 nm channel length In0.53Ga0.47As-based vertical inter-band tunnel field effect transistors (TFET) for ultra low-power logic and SRMA applications. IEEE Int. Electron Devices Meet. 137.1–137.4 (IEEE, 2009).

    Google Scholar 

  60. Zhao, H. et al. InGaAs tunneling field-effect transistors with atomic-layer-deposited gate oxides. IEEE Trans. Electron Devices 58, 2990–2995 (2011).

    Article  CAS  ADS  Google Scholar 

  61. Mookerjea, S., Mohata, D., Mayer, T., Narayanan V. & Datta, S. Temperature-dependent characteristics of a vertical tunnel FET. IEEE Electron Device Lett. 31, 564–566 (2010).

    Article  CAS  ADS  Google Scholar 

  62. Wang, L., Yu, E., Taur Y. & Asbeck, P. Design of tunneling field-effect transistors based on staggered heterojunctions for ultralow-power applications. IEEE Electron Device Lett. 31, 431–433 (2010).

    Article  CAS  ADS  Google Scholar 

  63. Mohata, D. et al. Experimental staggered-source and N+ pocket-doped channel III–V tunnel field-effect transistors and their scalabilities. Appl. Phys. Express 4, 024105 (2011).

    Article  ADS  Google Scholar 

  64. Zhou, G. et al. Self-aligned InAs/Al0.45Ga0.55Sb vertical tunnel FETs. IEEE Device Res. Conf. 205–206 (IEEE, 2011).

    Book  Google Scholar 

  65. Tomioka, K., Motohisa, J., Hara S. & Fukui, T. Control of InAs nanowire growth directions on Si. Nano Lett. 8, 3475–3480 (2008).

    Article  CAS  ADS  Google Scholar 

  66. Björk, M. T. et al. Si–InAs heterojunction Esaki tunnel diodes with high current densities. Appl. Phys. Lett. 97, 163501 (2010).

    Article  ADS  Google Scholar 

  67. Bessire, C. D. et al. Trap-assisted tunneling in Si–InAs nanowire heterojunction tunnel diodes. Nano Lett. 11, 4195–4199 (2011).

    Article  CAS  ADS  Google Scholar 

  68. Lu, Y. et al. Geometry dependent tunnel FET performance — dilemma of electrostatics vs. quantum confinement. IEEE Device Res. Conf. 17–18 (IEEE, 2010).

    Book  Google Scholar 

  69. Schmid, H. et al. Fabrication of vertical InAs–Si heterojunction tunnel field effect transistors. IEEE Proc. Device Res. Conf. 181–182 (2011).

  70. Poli, S. et al. Computational study of the ultimate scaling limits of CNT tunneling devices. IEEE Trans. Electron Devices 55, 313–321 (2008).

    Article  CAS  ADS  Google Scholar 

  71. Koswatta, S. O., Lundstrom, M. S. & Nikonov, D. E. Band-to-band tunneling in a carbon nanotube metal-oxide-semiconductor field-effect transistor is dominated by phonon-assisted tunneling. Nano Lett. 7, 1160–1164 (2007).

    Article  CAS  ADS  Google Scholar 

  72. Appenzeller, J., Lin, Y.-M., Knoch, J., Chen, Z. & Avouris, P. Comparing carbon nanotube transistors — the ideal choice: a novel tunneling device design. IEEE Trans. Electron Devices 52, 2568–2576 (2005).

    Article  CAS  ADS  Google Scholar 

  73. Zhang, Y. et al. Giant phonon-induced conductance in scanning tunneling spectroscopy of gate-tunable graphene. Nature Phys. 4, 627–630 (2008).

    Article  CAS  ADS  Google Scholar 

  74. Luisier, M. & Klimeck, G. Performance limitations of graphene nano ribbon tunneling FETS due to line edge roughness. IEEE Device Res. Conf. 201–202 (IEEE, 2009).

    Google Scholar 

  75. Fiori, G. & Iannaccone, G. Ultralow-voltage bilayer graphene tunnel FET. IEEE Electron Device Lett. 30, 1096–1098 (2009).

    Article  CAS  ADS  Google Scholar 

  76. ITRS International Technology Working Groups. International Technology Roadmap for Semiconductorshttp://www.itrs.net〉 (2010).

  77. Mookerjea, S., Krishnan, R., Datta, S. & Narayanan, V. On enhanced Miller capacitance effect in interband tunnel transistors. IEEE Electron Device Lett. 30, 1102–1104 (2009).

    Article  CAS  ADS  Google Scholar 

  78. Koswatta, S., Lundstrom, M. & Nikonov, D. Performance comparison between p-i-n tunneling transistors and conventional MOSFETs. IEEE Trans. Electron Devices 56, 456–465 (2009).

    Article  CAS  ADS  Google Scholar 

  79. Solomon, P. M., Frank, D. J. & Koswatta, S. O. Compact model and performance estimation for tunneling nanowire FET. IEEE Device Res. Conf. 197–198 (IEEE, 2011).

    Book  Google Scholar 

  80. Born, M. et al. Tunnel FET: a CMOS device for high temperature applications. Proc. 25th Int. Conf. Microelectron. 124–127 (IEEE, 2006).

    Google Scholar 

  81. Fulde, M. et al. Fabrication, optimization, and application of complementary multiple-gate tunneling FETs. Proc. INEC 579–584 (IEEE, 2008).

    Google Scholar 

  82. Kane, E. O. Zener tunneling in semiconductors. J. Phys. Chem. Solids 12, 181–188 (1959).

    Article  ADS  Google Scholar 

  83. Mookerjea, S., Mohata, D., Mayer, T., Narayanan, V. & Datta, S. Temperature-dependent I–V characteristics of a vertical In0.53Ga0.47As tunnel FET. IEEE Electron Device Lett. 31, 564–566 (2010).

    Article  CAS  ADS  Google Scholar 

  84. Moselund, K. E. et al. Silicon nanowire tunnel FETs: low-temperature operation and influence of high-k gate dielectric. IEEE Trans. Electron Devices 58, 2911–2916 (2011).

    Article  CAS  ADS  Google Scholar 

  85. Singh, J. et al. A novel Si-tunnel FET based SRAM design for ultra low-power 0.3 V V DD applications. Proc. Asia S. Pacif. Design Automat. Conf. 181–186 (ACM, 2010).

    Google Scholar 

  86. Saripalli, V., Mohata, D. K., Mookerjea, S., Datta, S. & Narayanan, V. Low power loadless 4T SRAM cell based on degenerately doped source (DDS) In0.53Ga0.47As tunnel FETs. IEEE Device Res. Conf. 101–102 (IEEE, 2010).

    Book  Google Scholar 

Download references

Acknowledgements

Some of this work was supported by the European Commission under the FP7 projects Guardian Angels for a Smarter Life and STEEPER. K. Boucart, L. De Michielis, C. Le Royer, K. Moselund, M. Björk, H. Schmid, W. Riess and P. Solomon are particularly acknowledged for useful discussions and supporting materials.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adrian M. Ionescu.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Reprints and permissions information is available at http://www.nature.com/reprints.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ionescu, A., Riel, H. Tunnel field-effect transistors as energy-efficient electronic switches. Nature 479, 329–337 (2011). https://doi.org/10.1038/nature10679

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature10679

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing