Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The alignment of molecular cloud magnetic fields with the spiral arms in M33

Abstract

The formation of molecular clouds, which serve as stellar nurseries in galaxies, is poorly understood. A class of cloud formation models suggests that a large-scale galactic magnetic field is irrelevant at the scale of individual clouds, because the turbulence and rotation of a cloud may randomize the orientation of its magnetic field1,2. Alternatively, galactic fields could be strong enough to impose their direction upon individual clouds3,4, thereby regulating cloud accumulation and fragmentation5, and affecting the rate and efficiency of star formation6. Our location in the disk of the Galaxy makes an assessment of the situation difficult. Here we report observations of the magnetic field orientation of six giant molecular cloud complexes in the nearby, almost face-on, galaxy M33. The fields are aligned with the spiral arms, suggesting that the large-scale field in M33 anchors the clouds.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The optical spiral arms and the locations of the six most massive GMCs in M33.
Figure 2: CO (2–1) maps and polarization vectors.
Figure 3: Distribution of the CO polarization-arm offsets.
Figure 4: Likelihood of obtaining simulated angle dispersions Σ and offsets Δ of CO polarization within the observed 90% confidence intervals.

Similar content being viewed by others

References

  1. Dobbs, C. GMC formation by agglomeration and self gravity. Mon. Not. R. Astron. Soc. 391, 844–858 (2008)

    Article  ADS  Google Scholar 

  2. Hartmann, L., Ballesteros-Paredes, J. & Bergin, E. Rapid formation of molecular clouds and stars in the solar neighborhood. Astrophys. J. 562, 852–868 (2001)

    Article  ADS  CAS  Google Scholar 

  3. Passot, T., Vazquez-Semadeni, E. & Pouquet, A. A turbulent model for the interstellar medium. II. Magnetic fields and rotation. Astrophys. J. 455, 536–555 (1995)

    Article  ADS  Google Scholar 

  4. Shetty, R. & Ostriker, E. Global modeling of spur formation in spiral galaxies. Astrophys. J. 647, 997–1017 (2006)

    Article  ADS  CAS  Google Scholar 

  5. Li, H.-b. et al. Evidence for dynamically important magnetic fields in molecular clouds. Mon. Not. R. Astron. Soc. 411, 2067–2075 (2011)

    Article  ADS  CAS  Google Scholar 

  6. Price, D. & Bate, M. The effect of magnetic fields on star cluster formation. Mon. Not. R. Astron. Soc. 385, 1820–1834 (2008)

    Article  ADS  CAS  Google Scholar 

  7. Kim, M., Kim, E., Lee, M., Sarajedini, A. & Geisler, D. Determination of the distance to M33 based on the tip of the red giant branch and the red clump. Astron. J. 123, 244–254 (2002)

    Article  ADS  Google Scholar 

  8. Ho, P., Moran, J. M. & Lo, K. Y. The submillimeter array. Astrophys. J. 616, L1–L6 (2004)

    Article  ADS  Google Scholar 

  9. Rosolowsky, E., Engargiola, G., Plambeck, R. & Blitz, L. Giant molecular clouds in M33. II. High-resolution observations. Astrophys. J. 599, 258–274 (2003)

    Article  ADS  CAS  Google Scholar 

  10. Goldreich, P. & Kylafis, N. On mapping the magnetic field direction in molecular clouds by polarization measurements. Astrophys. J. 243, L75–L78 (1981)

    Article  ADS  CAS  Google Scholar 

  11. Li, H.-b., Dowell, C., Goodman, A., Hildebrand, R. & Novak, G. Anchoring magnetic field in turbulent molecular clouds. Astrophys. J. 704, 891–897 (2009)

    Article  ADS  Google Scholar 

  12. Greaves, J., Holland, W., Friberg, P., Dent, W. & Polarized, C. O. Emission from molecular clouds. Astrophys. J. 512, L139–L142 (1999)

    Article  ADS  CAS  Google Scholar 

  13. Falceta-Gonçalves, D., Lazarian, A. & Kowal, G. Studies of regular and random magnetic fields in the ISM: statistics of polarization vectors and the Chandrasekhar-Fermi technique. Astrophys. J. 679, 537–551 (2008)

    Article  ADS  Google Scholar 

  14. Frick, P., Beck, R., Berkhuijsen, E. & Patrickeyev, I. Scaling and correlation analysis of galactic images. Mon. Not. R. Astron. Soc. 327, 1145–1157 (2001)

    Article  ADS  Google Scholar 

  15. Shukurov, A. in Dynamic Interstellar Medium: Recent Numerical Simulations. Plasma Turbulence and Energetic Particles in Astrophysics (eds Ostrowski, M. & Schlickeiser, R. ) 66–73 (Obserwatorium Astronomiczne, Uniwersytet Jagielloński, 1999)

    Google Scholar 

  16. Field, G., Goldsmith, D. & Habing, H. Cosmic-ray heating of the interstellar gas. Astrophys. J. 155, L149–L154 (1969)

    Article  ADS  Google Scholar 

  17. Kim, C.-G., Kim, W.-T. & Ostriker, E. Galactic spiral shocks with thermal instability. Astrophys. J. 681, 1148–1162 (2008)

    Article  ADS  Google Scholar 

  18. Chandrasekhar, S. & Fermi, E. Magnetic fields in spiral arms. Astrophys. J. 118, 113–115 (1953)

    Article  ADS  Google Scholar 

  19. Crutcher, R. In The Magnetized Plasma in Galaxy Evolution (eds Chyży, K. Otmianowska-Mazur, K., Soida, M. & Dettmar, R.-J. ). 103–110 (2005)

  20. Wilson, C., Walker, C. & Thornley, M. The density and temperature of molecular clouds in M33. Astrophys. J. 483, 210–219 (1997)

    Article  ADS  CAS  Google Scholar 

  21. Tabatabaei, F., Krause, M., Fletcher, A. & Beck, R. High-resolution radio continuum survey of M 33. III. Magnetic fields. Astron. Astrophys. 490, 1005–1017 (2008)

    Article  ADS  Google Scholar 

  22. Han, J. & Zhang, J. The Galactic distribution of magnetic fields in molecular clouds and HII regions. Astron. Astrophys. 464, 609–614 (2007)

    Article  ADS  CAS  Google Scholar 

  23. Heyer, M., Gong, H., Ostriker, E. & Brunt, C. Magnetically aligned velocity anisotropy in the Taurus molecular cloud. Astrophys. J. 680, 420–427 (2008)

    Article  ADS  CAS  Google Scholar 

  24. Mouschovias, T., Kunz, M. & Christie, D. Formation of interstellar clouds: Parker instability with phase transitions. Mon. Not. R. Astron. Soc. 397, 14–23 (2009)

    Article  ADS  CAS  Google Scholar 

  25. Li, H.-b. et al. Results of SPARO 2003: mapping magnetic fields in giant molecular clouds. Astrophys. J. 648, 340–354 (2006)

    Article  ADS  CAS  Google Scholar 

  26. Kwak, K., Shelton, R. & Raley, E. The evolution of gas clouds falling in the magnetized Galactic halo: high-velocity clouds (HVCs) originated in the Galactic fountain. Astrophys. J. 699, 1775–1788 (2009)

    Article  ADS  CAS  Google Scholar 

  27. Sandage, A. & Humphreys, R. On the warped optical plane of M33. Astrophys. J. 236, L1–L5 (1980)

    Article  ADS  CAS  Google Scholar 

  28. Men'shchikov, A. et al. Filamentary structures and compact objects in the Aquila and Polaris clouds observed by Herschel. Astron. Astrophys. 518, L103–L107 (2010)

    Article  ADS  Google Scholar 

  29. Kramer, C. et al. PACS and SPIRE photometer maps of M 33: first results of the HERschel M 33 Extended Survey (HERM33ES). Astron. Astrophys. 518, L67–L71 (2010)

    Article  ADS  Google Scholar 

  30. Rogstad, D., Wright, M. & Lockhart, I. Aperture synthesis of neutral hydrogen in the galaxy M33. Astrophys. J. 204, 703–716 (1976)

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank E. Rosolowsky, R. Shetty, T. K. Sridharan, M. Houde, S. Paine, H.-H. Wang, A. Karim, S. Ragan, K. Smith, P. Boley and T. Wu for comments. We appreciate the help of D. Marrone, G. Petitpas and R. Rao with the observations. We are grateful for the Herschel maps of M33 offered by C. Kramer. This research is supported by the Max-Planck-Institut für Astronomie and Harvard-Smithsonian Center for Astrophysics. The Submillimeter Array is a joint project between the Smithsonian Astrophysical Observatory and the Academia Sinica Institute of Astronomy and Astrophysics and is funded by the Smithsonian Institution and the Academia Sinica.

Author information

Authors and Affiliations

Authors

Contributions

H.L. designed and executed the experiment. H.L. and T.H. contributed jointly to the manuscript.

Corresponding author

Correspondence to Hua-bai Li.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

The file contains Supplementary Figures 1-3 with legends, Supplementary Text and an additional reference. (PDF 903 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Hb., Henning, T. The alignment of molecular cloud magnetic fields with the spiral arms in M33. Nature 479, 499–501 (2011). https://doi.org/10.1038/nature10551

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature10551

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing