Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A synthetic homing endonuclease-based gene drive system in the human malaria mosquito

Abstract

Genetic methods of manipulating or eradicating disease vector populations have long been discussed as an attractive alternative to existing control measures because of their potential advantages in terms of effectiveness and species specificity1,2,3. The development of genetically engineered malaria-resistant mosquitoes has shown, as a proof of principle, the possibility of targeting the mosquito’s ability to serve as a disease vector4,5,6,7. The translation of these achievements into control measures requires an effective technology to spread a genetic modification from laboratory mosquitoes to field populations8. We have suggested previously that homing endonuclease genes (HEGs), a class of simple selfish genetic elements, could be exploited for this purpose9. Here we demonstrate that a synthetic genetic element, consisting of mosquito regulatory regions10 and the homing endonuclease gene I-SceI11,12,13, can substantially increase its transmission to the progeny in transgenic mosquitoes of the human malaria vector Anopheles gambiae. We show that the I-SceI element is able to invade receptive mosquito cage populations rapidly, validating mathematical models for the transmission dynamics of HEGs. Molecular analyses confirm that expression of I-SceI in the male germline induces high rates of site-specific chromosomal cleavage and gene conversion, which results in the gain of the I-SceI gene, and underlies the observed genetic drive. These findings demonstrate a new mechanism by which genetic control measures can be implemented. Our results also show in principle how sequence-specific genetic drive elements like HEGs could be used to take the step from the genetic engineering of individuals to the genetic engineering of populations.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Analysis of HEG activity in transgenic mosquitoes.
Figure 2: HEG invasion in mosquito cage populations.

Similar content being viewed by others

Accession codes

Primary accessions

GenBank/EMBL/DDBJ

Data deposits

The plasmids pHome-T and pHome-D have been deposited to GenBank under the accession numbers HQ159398 and HQ159399.

References

  1. Curtis, C. F. Possible use of translocations to fix desirable genes in insect pest populations. Nature 218, 368–369 (1968)

    Article  ADS  CAS  Google Scholar 

  2. Hamilton, W. D. Extraordinary sex ratios. A sex-ratio theory for sex linkage and inbreeding has new implications in cytogenetics and entomology. Science 156, 477–488 (1967)

    Article  ADS  CAS  Google Scholar 

  3. Alphey, L. et al. Malaria control with genetically manipulated insect vectors. Science 298, 119–121 (2002)

    Article  ADS  CAS  Google Scholar 

  4. Corby-Harris, V. et al. Activation of Akt signaling reduces the prevalence and intensity of malaria parasite infection and lifespan in Anopheles stephensi mosquitoes. PLoS Pathog. 6, e1001003 (2010)

    Article  Google Scholar 

  5. Ito, J., Ghosh, A., Moreira, L. A., Wimmer, E. A. & Jacobs-Lorena, M. Transgenic anopheline mosquitoes impaired in transmission of a malaria parasite. Nature 417, 452–455 (2002)

    Article  ADS  CAS  Google Scholar 

  6. Moreira, L. A. et al. Bee venom phospholipase inhibits malaria parasite development in transgenic mosquitoes. J. Biol. Chem. 277, 40839–40843 (2002)

    Article  CAS  Google Scholar 

  7. Li, F., Patra, K. P. & Vinetz, J. M. An anti-chitinase malaria transmission-blocking single-chain antibody as an effector molecule for creating a Plasmodium falciparum-refractory mosquito. J. Infect. Dis. 192, 878–887 (2005)

    Article  CAS  Google Scholar 

  8. Sinkins, S. P. & Gould, F. Gene drive systems for insect disease vectors. Nature Rev. Genet. 7, 427–435 (2006)

    Article  CAS  Google Scholar 

  9. Burt, A. Site-specific selfish genes as tools for the control and genetic engineering of natural populations. Proc. R. Soc. Lond. B 270, 921–928 (2003)

    Article  CAS  Google Scholar 

  10. Catteruccia, F., Benton, J. P. & Crisanti, A. An Anopheles transgenic sexing strain for vector control. Nature Biotechnol. 23, 1414–1417 (2005)

    Article  CAS  Google Scholar 

  11. Jacquier, A. & Dujon, B. An intron-encoded protein is active in a gene conversion process that spreads an intron into a mitochondrial gene. Cell 41, 383–394 (1985)

    Article  CAS  Google Scholar 

  12. Bellaiche, Y., Mogila, V. & Perrimon, N. I-SceI endonuclease, a new tool for studying DNA double-strand break repair mechanisms in Drosophila . Genetics 152, 1037–1044 (1999)

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Windbichler, N. et al. Homing endonuclease mediated gene targeting in Anopheles gambiae cells and embryos. Nucleic Acids Res. 35, 5922–5933 (2007)

    Article  CAS  Google Scholar 

  14. Stoddard, B. L. Homing endonuclease structure and function. Q. Rev. Biophys. 38, 49–95 (2005)

    Article  CAS  Google Scholar 

  15. Goddard, M. R., Greig, D. & Burt, A. Outcrossed sex allows a selfish gene to invade yeast populations. Proc. R. Soc. Lond. B 268, 2537–2542 (2001)

    Article  CAS  Google Scholar 

  16. Meredith, J. M. et al. Site-specific integration and expression of an anti-malarial gene in transgenic Anopheles gambiae significantly reduces Plasmodium infections. PLoS ONE 6, e14587 (2011)

    Article  ADS  CAS  Google Scholar 

  17. Burt, A. & Koufopanou, V. Homing endonuclease genes: the rise and fall and rise again of a selfish element. Curr. Opin. Genet. Dev. 14, 609–615 (2004)

    Article  CAS  Google Scholar 

  18. Chen, C. H. et al. A synthetic maternal-effect selfish genetic element drives population replacement in Drosophila . Science 316, 597–600 (2007)

    Article  ADS  CAS  Google Scholar 

  19. McMeniman, C. J. et al. Stable introduction of a life-shortening Wolbachia infection into the mosquito Aedes aegypti . Science 323, 141–144 (2009)

    Article  ADS  CAS  Google Scholar 

  20. Ashworth, J. et al. Computational redesign of endonuclease DNA binding and cleavage specificity. Nature 441, 656–659 (2006)

    Article  ADS  CAS  Google Scholar 

  21. Jarjour, J. et al. High-resolution profiling of homing endonuclease binding and catalytic specificity using yeast surface display. Nucleic Acids Res. 37, 6871–6880 (2009)

    Article  CAS  Google Scholar 

  22. Ashworth, J. et al. Computational reprogramming of homing endonuclease specificity at multiple adjacent base pairs. Nucleic Acids Res. 38, 5601–5608 (2010)

    Article  CAS  Google Scholar 

  23. Thyme, S. B. et al. Exploitation of binding energy for catalysis and design. Nature 461, 1300–1304 (2009)

    Article  ADS  CAS  Google Scholar 

  24. Gao, H. et al. Heritable targeted mutagenesis in maize using a designed endonuclease. Plant J. 61, 176–187 (2010)

    Article  CAS  Google Scholar 

  25. Grizot, S. et al. Efficient targeting of a SCID gene by an engineered single-chain homing endonuclease. Nucleic Acids Res. 37, 5405–5419 (2009)

    Article  CAS  Google Scholar 

  26. Munoz, I. G. et al. Molecular basis of engineered meganuclease targeting of the endogenous human RAG1 locus. Nucleic Acids Res. 39, 729–743 (2010)

    Article  Google Scholar 

  27. Redondo, P. et al. Molecular basis of xeroderma pigmentosum group C DNA recognition by engineered meganucleases. Nature 456, 107–111 (2008)

    Article  ADS  CAS  Google Scholar 

  28. Arnould, S. et al. Engineered I-CreI derivatives cleaving sequences from the human XPC gene can induce highly efficient gene correction in mammalian cells. J. Mol. Biol. 371, 49–65 (2007)

    Article  CAS  Google Scholar 

  29. Rosen, L. E. et al. Homing endonuclease I-CreI derivatives with novel DNA target specificities. Nucleic Acids Res. 34, 4791–4800 (2006)

    Article  ADS  CAS  Google Scholar 

  30. Li, H., Pellenz, S., Ulge, U., Stoddard, B. L. & Monnat, R. J., Jr Generation of single-chain LAGLIDADG homing endonucleases from native homodimeric precursor proteins. Nucleic Acids Res. 37, 1650–1662 (2009)

    Article  CAS  Google Scholar 

  31. Sheng, G., Thouvenot, E., Schmucker, D., Wilson, D. S. & Desplan, C. Direct regulation of rhodopsin 1 by Pax-6/eyeless in Drosophila: evidence for a conserved function in photoreceptors. Genes Dev. 11, 1122–1131 (1997)

    Article  CAS  Google Scholar 

  32. Lobo, N. F., Clayton, J. R., Fraser, M. J., Kafatos, F. C. & Collins, F. H. High efficiency germ-line transformation of mosquitoes. Nature Protocols 1, 1312–1317 (2006)

    Article  CAS  Google Scholar 

  33. Catteruccia, F., Godfray, H. C. & Crisanti, A. Impact of genetic manipulation on the fitness of Anopheles stephensi mosquitoes. Science 299, 1225–1227 (2003)

    Article  ADS  CAS  Google Scholar 

  34. Scalley-Kim, M., McConnell-Smith, A. & Stoddard, B. L. Coevolution of a homing endonuclease and its host target sequence. J. Mol. Biol. 372, 1305–1319 (2007)

    Article  CAS  Google Scholar 

  35. Thyme, S. B. et al. Exploitation of binding energy for catalysis and design. Nature 461, 1300–1304 (2009)

    Article  ADS  CAS  Google Scholar 

  36. Doyon, J. B., Pattanayak, V., Meyer, C. B. & Liu, D. R. Directed evolution and substrate specificity profile of homing endonuclease I-SceI. J. Am. Chem. Soc. 128, 2477–2484 (2006)

    Article  CAS  Google Scholar 

  37. Argast, G. M., Stephens, K. M., Emond, M. J. & Monnat, R. J., Jr I-PpoI and I-CreI homing site sequence degeneracy determined by random mutagenesis and sequential in vitro enrichment. J. Mol. Biol. 280, 345–353 (1998)

    Article  CAS  Google Scholar 

  38. Ulge, U. Y., Baker, D. A. & Monnat, R. J. Comprehensive computational design of mCreI homing endonuclease cleavage specificity for genome engineering. Nucleic Acids Res. 10.1093/nar/gkr022 (1 February 2011)

  39. McConnell Smith, A. et al. Generation of a nicking enzyme that stimulates site-specific gene conversion from the I-AniI LAGLIDADG homing endonuclease. Proc. Natl Acad. Sci. USA 106, 5099–5104 (2009)

    Article  ADS  CAS  Google Scholar 

  40. Das, R. & Baker, D. Macromolecular modeling with Rosetta. Annu. Rev. Biochem. 77, 363–382 (2008)

    Article  CAS  Google Scholar 

  41. Studier, F. W. Protein production by auto-induction in high density shaking cultures. Protein Expr. Purif. 41, 207–234 (2005)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank M. Ashburner, S. Russell, D. Huen and S. Chan for comments, assistance and for plasmids. We thank M. P. Calos for providing the pET11phiC31polyA plasmid. We thank M. J. Fraser Jr for providing the pBSII-IFP2-orf plasmid. We thank J. Meredith and P. Eggleston for providing the docking strain. We thank A. Hall, T. Nolan, K. Magnusson, D. Rogers and S. Fuchs for assistance. We thank S. Arshiya Quadri and M. Szeto for experimental support and the members of the laboratories of D. Baker, R. Monnat, A. Scharenberg and B. Stoddard for their collective support of HEG engineering. A. F. M. Hackmann provided graphics support. Funded by a grant from the Foundation for the National Institutes of Health through the Vector-Based Control of Transmission: Discovery Research (VCTR) program of the Grand Challenges in Global Health initiative and by NIH RL1 awards GM084433 to D.B. and CA133831 to R.J.M.

Author information

Authors and Affiliations

Authors

Contributions

N.W. designed the experiments. N.W., M.M. and P.A.P. performed the experiments. N.W. and P.A.P. generated the transgenic lines. M.M. maintained mosquito populations. N.W. analysed the data. A.B. and N.W. generated the population dynamic models. A.C. and A.B. inspired the work and wrote the paper together with N.W. HEG redesign and target site cleavage analyses were performed by S.B.T., H.L., U.Y.U. (contributed equally) and B.T.H. with guidance from D.B. and R.J.M. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Andrea Crisanti.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Figures 1-6 with legends and Supplementary Table 1. (PDF 2210 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Windbichler, N., Menichelli, M., Papathanos, P. et al. A synthetic homing endonuclease-based gene drive system in the human malaria mosquito. Nature 473, 212–215 (2011). https://doi.org/10.1038/nature09937

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature09937

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing