Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Trapped antihydrogen

Subjects

Abstract

Antimatter was first predicted1 in 1931, by Dirac. Work with high-energy antiparticles is now commonplace, and anti-electrons are used regularly in the medical technique of positron emission tomography scanning. Antihydrogen, the bound state of an antiproton and a positron, has been produced2,3 at low energies at CERN (the European Organization for Nuclear Research) since 2002. Antihydrogen is of interest for use in a precision test of nature’s fundamental symmetries. The charge conjugation/parity/time reversal (CPT) theorem, a crucial part of the foundation of the standard model of elementary particles and interactions, demands that hydrogen and antihydrogen have the same spectrum. Given the current experimental precision of measurements on the hydrogen atom (about two parts in 1014 for the frequency of the 1s-to-2s transition4), subjecting antihydrogen to rigorous spectroscopic examination would constitute a compelling, model-independent test of CPT. Antihydrogen could also be used to study the gravitational behaviour of antimatter5. However, so far experiments have produced antihydrogen that is not confined, precluding detailed study of its structure. Here we demonstrate trapping of antihydrogen atoms. From the interaction of about 107 antiprotons and 7 × 108 positrons, we observed 38 annihilation events consistent with the controlled release of trapped antihydrogen from our magnetic trap; the measured background is 1.4 ± 1.4 events. This result opens the door to precision measurements on anti-atoms, which can soon be subjected to the same techniques as developed for hydrogen.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The ALPHA central apparatus and mixing potential.
Figure 2: Detected antiproton annihilation and cosmic ray events.
Figure 3: Distributions of released antihydrogen atoms and antiprotons.

Similar content being viewed by others

References

  1. Dirac, P. A. M. Quantised singularities in the electromagnetic field. Proc. R. Soc. Lond. A 133, 60–72 (1931)

    Article  ADS  Google Scholar 

  2. Amoretti, M. et al. Production and detection of cold antihydrogen atoms. Nature 419, 456–459 (2002)

    Article  ADS  CAS  Google Scholar 

  3. Gabrielse, G. et al. Background-free observation of cold antihydrogen with field-ionization analysis of its states. Phys. Rev. Lett. 89, 213401 (2002)

    Article  ADS  CAS  Google Scholar 

  4. Niering, M. et al. Measurement of the hydrogen 1S-2S transition frequency by phase coherent comparison with a microwave cesium fountain clock. Phys. Rev. Lett. 84, 5496–5499 (2000)

    Article  ADS  CAS  Google Scholar 

  5. Drobychev, G. Y. et al. Proposal for the AEGIS experiment at the CERN antiproton decelerator (antimatter experiment: gravity, interferometry, spectroscopy). Tech. Report SPSC-P-334; CERN-SPSC-2007–017 (European Organization for Nuclear Research, 2007)

    Google Scholar 

  6. Maury, S. The antiproton decelerator: AD. Hyperfine Interact. 109, 43–52 (1997)

    Article  ADS  CAS  Google Scholar 

  7. Bertsche, W. et al. A magnetic trap for antihydrogen confinement. Nucl. Instrum. Methods Phys. Res. A 566, 746–756 (2006)

    Article  ADS  CAS  Google Scholar 

  8. Pritchard, D. E. Cooling neutral atoms in a magnetic trap for precision spectroscopy. Phys. Rev. Lett. 51, 1336–1339 (1983)

    Article  ADS  CAS  Google Scholar 

  9. Fajans, J. et al. Effects of extreme magnetic quadrupole fields on Penning traps, and the consequences for antihydrogen trapping. Phys. Rev. Lett. 95, 155001 (2005)

    Article  ADS  CAS  Google Scholar 

  10. Andresen, G. et al. Antimatter plasmas in a multipole trap for antihydrogen. Phys. Rev. Lett. 98, 023402 (2007)

    Article  ADS  CAS  Google Scholar 

  11. Fujiwara, M. C. et al. Particle physics aspects of antihydrogen studies with ALPHA at CERN. AIP Conf. Proc. 1078, 208–220 (2008)

    Article  ADS  Google Scholar 

  12. Gabrielse, G. et al. First capture of antiprotons in a Penning trap: a kiloelectronvolt source. Phys. Rev. Lett. 57, 2504–2507 (1986)

    Article  ADS  CAS  Google Scholar 

  13. Gabrielse, G. et al. Cooling and slowing of trapped antiprotons below 100 meV. Phys. Rev. Lett. 63, 1360–1363 (1989)

    Article  ADS  CAS  Google Scholar 

  14. Surko, C. M. & Greaves, R. G. Emerging science and technology of antimatter plasmas and trap-based beams. Phys. Plasmas 11, 2333–2348 (2004)

    Article  ADS  CAS  Google Scholar 

  15. Jørgensen, L. V. et al. New source of dense, cryogenic positron plasmas. Phys. Rev. Lett. 95, 025002 (2005)

    Article  ADS  Google Scholar 

  16. Hess, H. F. Evaporative cooling of magnetically trapped and compressed spin-polarized hydrogen. Phys. Rev. B 34, 3476–3479 (1986)

    Article  ADS  CAS  Google Scholar 

  17. Andresen, G. B. et al. Evaporative cooling of antiprotons to cryogenic temperatures. Phys. Rev. Lett. 105, 013003 (2010)

    Article  ADS  CAS  Google Scholar 

  18. Gabrielse, G. et al. Antihydrogen production using trapped plasmas. Phys. Lett. A 129, 38–42 (1988)

    Article  ADS  CAS  Google Scholar 

  19. Fajans, J., Gilson, E. & Friedland, L. Autoresonant (nonstationary) excitation of the diocotron mode in non-neutral plasmas. Phys. Rev. Lett. 82, 4444–4447 (1999)

    Article  ADS  CAS  Google Scholar 

  20. Barth, I. et al. Autoresonant transition in the presence of noise and self-fields. Phys. Rev. Lett. 103, 155001 (2009)

    Article  ADS  CAS  Google Scholar 

  21. Andresen, G. B. et al. Antihydrogen formation dynamics in a multipolar neutral anti-atom trap. Phys. Lett. B 685, 141–145 (2010)

    Article  ADS  CAS  Google Scholar 

  22. Amoretti, M. et al. Antihydrogen production temperature dependence. Phys. Lett. B 583, 59–67 (2004)

    Article  ADS  CAS  Google Scholar 

  23. Andresen, G. et al. Search for trapped antihydrogen. Phys. Lett. B. 10.1016/j.physletb.2010.11.004 (in the press)

  24. Huang, X.-P., Anderegg, F., Hollmann, E. M., Driscoll, C. F. & O’Neil, T. M. Steady-state confinement of nonneutral plasmas by rotating electric fields. Phys. Rev. Lett. 78, 875–878 (1997)

    Article  ADS  CAS  Google Scholar 

  25. Danielson, J. R. & Surko, C. M. Radial compression and torque-balanced steady states of single-component plasmas in Penning-Malmberg traps. Phys. Plasmas 13, 055706 (2006)

    Article  ADS  Google Scholar 

  26. Andresen, G. B. et al. Antiproton, positron, and electron imaging with a microchannel plate/phosphor detector. Rev. Sci. Instrum. 80, 123701 (2009)

    Article  ADS  CAS  Google Scholar 

  27. Andresen, G. B. et al. Compression of antiproton clouds for antihydrogen trapping. Phys. Rev. Lett. 100, 203401 (2008)

    Article  ADS  CAS  Google Scholar 

  28. Eggleston, D. L., Driscoll, C. F., Beck, B. R., Hyatt, A. W. & Malmberg, J. H. Parallel energy analyzer for pure electron plasma devices. Phys. Fluids B 4, 3432–3439 (1992)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by CNPq, FINEP/RENAFAE (Brazil); ISF (Israel); MEXT (Japan); FNU (Denmark); VR (Sweden); NSERC, NRC/TRIUMF, AIF, FQRNT (Canada); the DOE and the NSF (USA); and EPSRC, the Royal Society and the Leverhulme Trust (UK). We thank them for their generous support. We are grateful to the Antiproton Decelerator team, T. Eriksson, P. Belochitskii, B. Dupuy, L. Bojtar, C. Oliveira, K. Mikluha and G. Tranquille, for the delivery of a high-quality antiproton beam. The contributions of summer students C. C. Bray, C. Ø. Rasmussen, S. Kemp, K. K. Andersen, D. Wilding, K. Mikkelsen and L. Bryngemark are acknowledged. We would like to thank the following individuals for help: M. Harrison, J. Escallier, A. Marone, M. Anerella, A. Ghosh, B. Parker, G. Ganetis, J. Thornhill, D. Wells, D. Seddon, K. Dahlerup-Pedersen, J. Mourao, T. Fowler, S. Russenschuck, R. De Oliveira, N. Wauquier, J. Hansen, M. Polini, J. M. Geisser, L. Deparis, P. Frichot, J. M. Malzacker, A. Briswalter, P. Moyret, S. Mathot, G. Favre, J. P. Brachet, P. Mésenge, S. Sgobba, A. Cherif, J. Bremer, J. Casas-Cubillos, N. Vauthier, G. Perinic, O. Pirotte, A. Perin, G. Perinic, B. Vullierme, D. Delkaris, N. Veillet, K. Barth, R. Consentino, S. Guido, L. Stewart, M. Malabaila, A. Mongelluzzo, P. Chiggiato, E. Mahner, A. Froton, C. Lasseur, F. Hahn, E. Søndergaard, F. Mikkelsen, W. Carlisle, A. Charman, J. Keller, P. Amaudruz, D. Bishop, R. Bula, K. Langton, P. Vincent, S. Chan, D. Rowbotham, P. Bennet, B. Evans, J.-P. Martin, P. Kowalski, A. Read, T. Willis, J. Kivell, H. Thomas, W. Lai, L. Wasilenko, C. Kolbeck, H. Malik, P. Genoa, L. Posada and R. Funakoshi.

Author information

Authors and Affiliations

Authors

Contributions

W.B., P.D.B., J.F., M.C.F., J.S.H., N.M. and D.M.S. conceived, designed and constructed the central ALPHA apparatus and participated in all aspects of the experimental and physics programmes. G.B.A., M.D.A., M.B.-R., E.B., S.C., T.F., A.J.H., R.H., M.J.J., A.P., S.S.e.N. and C.S. participated actively in the experimental runs, data taking, on- and offline analysis, and maintenance and modification of the apparatus. D.R.G., A.O. and J.W.S. contributed to all aspects of the detector systems and participated actively in the experimental and analysis efforts. M.C., D.P.v.d.W. and L.V.J. designed and built the positron accumulator and participated in the experimental programme. F.R. performed the particle simulations reported in this paper, made the theoretical estimate of trapping rate and supported the design and experimental programmes with simulations and calculations. P.N. led the design of the ALPHA silicon detector. P.P. was responsible for implementing the silicon detector at CERN and participated in the experimental and analysis programmes. A.D. and A.G. contributed to the experimental shift work. S.J. and J.S.W. contributed theoretical support in the form of atomic or plasma physics calculations and simulations, and provided guidance in the experimental programme. E.S. contributed to the multichannel plate imaging system and participated in the experimental efforts. C.L.C., W.N.H., M.E.H., S.E., S.M. and R.I.T. participated in the experimental programme and the physics planning effort. Y.Y. provided organizational and financial support and participated in physics discussions. L.K. and K.O. provided off-site support for detector electronics and database management systems, respectively. J.S.H. wrote the initial manuscript, which was edited by J.F., M.C.F., P.D.B., N.M. and E.B. before being improved and approved by the entire collaboration.

Corresponding author

Correspondence to J. S. Hangst.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Andresen, G., Ashkezari, M., Baquero-Ruiz, M. et al. Trapped antihydrogen. Nature 468, 673–676 (2010). https://doi.org/10.1038/nature09610

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature09610

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing