Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Conical intersection dynamics of the primary photoisomerization event in vision

Abstract

Ever since the conversion of the 11-cis retinal chromophore to its all-trans form in rhodopsin was identified as the primary photochemical event in vision1, experimentalists and theoreticians have tried to unravel the molecular details of this process. The high quantum yield of 0.65 (ref. 2), the production of the primary ground-state rhodopsin photoproduct within a mere 200 fs (refs 3–7), and the storage of considerable energy in the first stable bathorhodopsin intermediate8 all suggest an unusually fast and efficient photoactivated one-way reaction9. Rhodopsin's unique reactivity is generally attributed to a conical intersection between the potential energy surfaces of the ground and excited electronic states10,11 enabling the efficient and ultrafast conversion of photon energy into chemical energy12,13,14,15,16. But obtaining direct experimental evidence for the involvement of a conical intersection is challenging: the energy gap between the electronic states of the reacting molecule changes significantly over an ultrashort timescale, which calls for observational methods that combine high temporal resolution with a broad spectral observation window. Here we show that ultrafast optical spectroscopy with sub-20-fs time resolution and spectral coverage from the visible to the near-infrared allows us to follow the dynamics leading to the conical intersection in rhodopsin isomerization. We track coherent wave-packet motion from the photoexcited Franck–Condon region to the photoproduct by monitoring the loss of reactant emission and the subsequent appearance of photoproduct absorption, and find excellent agreement between the experimental observations and molecular dynamics calculations that involve a true electronic state crossing. Taken together, these findings constitute the most compelling evidence to date for the existence and importance of conical intersections in visual photochemistry.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Wave-packet dynamics through the rhodopsin conical intersection.
Figure 2: Isomerization potential energy surfaces of rhodopsin.
Figure 3: Rhodopsin isomerization probed in the visible spectral range.

Similar content being viewed by others

References

  1. Yoshizawa, T. & Wald, G. Pre-lumirhodopsin and the bleaching of visual pigments. Nature 197, 1279–1286 (1963)

    Article  ADS  CAS  Google Scholar 

  2. Kim, J. E., Tauber, M. J. & Mathies, R. A. Wavelength dependent cis-trans isomerization in vision. Biochemistry 40, 13774–13778 (2001)

    Article  CAS  Google Scholar 

  3. Schoenlein, R. W., Peteanu, L. A., Mathies, R. A. & Shank, C. V. The first step in vision: femtosecond isomerization of rhodopsin. Science 254, 412–415 (1991)

    Article  ADS  CAS  Google Scholar 

  4. Haran, G., Morlino, E. A., Matthes, J., Callender, R. H. & Hochstrasser, R. M. Femtosecond polarized pump-probe and stimulated emission spectroscopy of the isomerization reaction of rhodopsin. J. Phys. Chem. A 103, 2202–2207 (1999)

    Article  CAS  Google Scholar 

  5. Chosrowjan, H. et al. Rhodopsin emission in real time: a new aspect of the primary event in vision. J. Am. Chem. Soc. 120, 9706–9707 (1998)

    Article  CAS  Google Scholar 

  6. Kandori, H. et al. Excited-state dynamics of rhodopsin probed by femtosecond fluorescence spectroscopy. Chem. Phys. Lett. 334, 271–276 (2001)

    Article  ADS  CAS  Google Scholar 

  7. Kochendoerfer, G. G. & Mathies, R. A. Spontaneous emission study of the femtosecond isomerization dynamics of rhodopsin. J. Phys. Chem. 100, 14526–14532 (1996)

    Article  CAS  Google Scholar 

  8. Schick, G. A., Cooper, T. M., Holloway, R. A., Murray, L. P. & Birge, R. R. Energy storage in the primary photochemical events of rhodopsin and isorhodopsin. Biochemistry 26, 2556–2562 (1987)

    Article  CAS  Google Scholar 

  9. Mathies, R. A. & Lugtenburg, J. in Handbook of Biological Physics Vol. 3, Molecular Mechanisms in Visual Transduction (eds Stavenga, D. G., DeGrip, W. J. & Pugh E. N.) 55–90 (Elsevier Science, 2000)

    Chapter  Google Scholar 

  10. Garavelli, M., Celani, P., Bernardi, F., Robb, M. A. & Olivucci, M. The C5H6NH2 + protonated Shiff base: an ab initio minimal model for retinal photoisomerization. J. Am. Chem. Soc. 119, 6891–6901 (1997)

    Article  CAS  Google Scholar 

  11. González-Luque, R. et al. Computational evidence in favor of a two-state, two-mode model of the retinal chromophore photoisomerization. Proc. Natl Acad. Sci. USA 97, 9379–9384 (2000)

    Article  ADS  Google Scholar 

  12. Klessinger, M. & Michl, J. Excited States and Photochemistry of Organic Molecules (VCH, 1994)

    Google Scholar 

  13. Levine, B. G. & Martinez, T. M. Isomerization through conical intersections. Annu. Rev. Phys. Chem. 58, 613–634 (2007)

    Article  ADS  CAS  Google Scholar 

  14. Frutos, L. M., Andruniow, T., Santoro, F., Ferre, N. & Olivucci, M. Tracking the excited-state time evolution of the visual pigment with multiconfigurational quantum chemistry. Proc. Natl Acad. Sci. USA 104, 7764–7769 (2007)

    Article  ADS  CAS  Google Scholar 

  15. Hayashi, S., Tajkhorshid, E. & Schulten, K. Photochemical reaction dynamics of the primary event of vision studied by means of a hybrid molecular simulation. Biophys. J. 96, 403–416 (2009)

    Article  ADS  CAS  Google Scholar 

  16. Tomasello, G. et al. Electrostatic control of the photoisomerization efficiency and optical properties in visual pigments: on the role of counterion quenching. J. Am. Chem. Soc. 131, 5172–5186 (2009)

    Article  CAS  Google Scholar 

  17. Manzoni, C., Polli, D. & Cerullo, G. Two-color pump-probe system broadly tunable over the visible and the near infrared with sub-30 fs temporal resolution. Rev. Sci. Instrum. 77, 023103 (2006)

    Article  ADS  Google Scholar 

  18. Weingart, O. The twisted C11 = C12 bond of the rhodopsin chromophore — a photochemical hot spot. J. Am. Chem. Soc. 129, 10618–10619 (2007)

    Article  CAS  Google Scholar 

  19. Hayashi, S., Tajkhorshid, E. & Schulten, K. Molecular dynamics simulation of bacteriorhodopsin’s photoisomerization using ab initio forces for the excited chromophore. Biophys. J. 85, 1440–1449 (2003)

    Article  CAS  Google Scholar 

  20. Groenhof, G. et al. Photoactivation of the photoactive yellow protein: why photon absorption triggers a trans-to-cis isomerization of the chromophore in the protein. J. Am. Chem. Soc. 126, 4228–4233 (2004)

    Article  CAS  Google Scholar 

  21. Groenhof, G. et al. Ultrafast deactivation of an excited cytosine-guanine base pair in DNA. J. Am. Chem. Soc. 129, 6812–6819 (2007)

    Article  CAS  Google Scholar 

  22. Hudock, H. R. et al. Ab initio molecular dynamics and time-resolved photoelectron spectroscopy of electronically excited uracil and thymine. J. Phys. Chem. A 111, 8500–8508 (2007)

    Article  CAS  Google Scholar 

  23. Hudock, H. R. & Martinez, T. J. Excited-state dynamics of cytosine reveal multiple intrinsic subpicosecond pathways. ChemPhysChem 9, 2486–2490 (2008)

    Article  CAS  Google Scholar 

  24. Andersson, K., Malmqvist, P.-A. & Roos, B. O. Second-order perturbation theory with a complete active space self-consistent field reference function. J. Chem. Phys. 96, 1218–1226 (1992)

    Article  ADS  CAS  Google Scholar 

  25. Tao, H., Levine, B. G. & Martinez, T. J. Ab initio multiple spawning dynamics using multi-state second-order perturbation. J. Phys. Chem. A 113, 13656–13662 (2009)

    Article  CAS  Google Scholar 

  26. Kukura, P., McCamant, D. W., Yoon, S., Wandschneider, D. B. & Mathies, R. A. Structural observation of the primary isomerization in vision with femtosecond-stimulated Raman. Science 310, 1006–1009 (2005)

    Article  ADS  CAS  Google Scholar 

  27. Wang, Q., Schoenlein, R. W., Peteanu, L. A., Mathies, R. A. & Shank, C. V. Vibrationally coherent photochemistry in the femtosecond primary event of vision. Science 266, 422–424 (1994)

    Article  ADS  CAS  Google Scholar 

  28. Warshel, A. Bicycle-pedal model for the first step in the vision process. Nature 260, 679–683 (1976)

    Article  ADS  CAS  Google Scholar 

  29. Warshel, A. & Barboy, N. Energy storage and reaction pathways in the first step of the vision process. J. Am. Chem. Soc. 104, 1469–1476 (1982)

    Article  CAS  Google Scholar 

  30. Okada, T. et al. The retinal conformation and its environment in rhodopsin in light of a new 2.2 Å crystal structure. J. Mol. Biol. 342, 571–583 (2004)

    Article  CAS  Google Scholar 

  31. De Grip, W. J., Daemen, F. J. M. & Bonting, S. L. Isolation and purification of bovine rhodopsin. Methods Enzymol. 67, 301–320 (1980)

    Article  CAS  Google Scholar 

  32. Polli, D., Lüer, L. & Cerullo, G. High-time-resolution pump-probe system with broadband detection for the study of time-domain vibrational dynamics. Rev. Sci. Instrum. 78, 103108 (2007)

    Article  ADS  Google Scholar 

  33. Lin, H. & Truhlar, D. G. QM/MM: what have we learned, where are we, and where do we go from here? Theor. Chem. Acc. 117, 185–199 (2007)

    Article  CAS  Google Scholar 

  34. Altoè, P., Stenta, M., Bottoni, A. & Garavelli, M. A tunable QM/MM approach to chemical reactivity, structure and physico-chemical properties prediction. Theor. Chem. Acc. 118, 219–240 (2007)

    Article  Google Scholar 

  35. Singh, U. C. & Kollman, P. A. A combined ab initio quantum mechanical and molecular mechanical method for carrying out simulations on complex molecular systems: applications to the CH3Cl + Cl exchange reaction and gas phase protonation of polyethers. J. Comput. Chem. 7, 718–730 (1986)

    Article  CAS  Google Scholar 

  36. Werner, H.-J. et al. MOLPRO, version 2008.1, a package of ab initio programs. (Cardiff University, UK, 2008)

  37. Karlström, G. et al. MOLCAS: a program package for computational chemistry. Comput. Mater. Sci. 28, 222–239 (2003)

    Article  Google Scholar 

  38. Case, D. A. et al. The Amber biomolecular simulation programs. J. Comput. Chem. 26, 1668–1688 (2005)

    Article  CAS  Google Scholar 

  39. Stenta, M. et al. The catalytic activity of proline racemase: a quantum mechanical/molecular mechanical study. J. Phys. Chem. B 112, 1057–1059 (2008)

    Article  CAS  Google Scholar 

  40. Roos, B. O. in Advances in Chemical Physics: Ab Initio Methods in Quantum Chemistry Part 2, Vol. 69 (ed. Lawley, K. P.) 399–446 (Wiley & Sons, 1987)

    Google Scholar 

  41. Cembran, A., Bernardi, F., Olivucci, M. & Garavelli, M. Counterion controlled photoisomerization of retinal chromophore models: a computational investigation. J. Am. Chem. Soc. 126, 16018–16037 (2004)

    Article  CAS  Google Scholar 

  42. Sloane, C. S. & Hase, W. L. On the dynamics of state selected unimolecular reactions: chloroacetylene dissociation and predissociation. J. Chem. Phys. 66, 1523–1533 (1977)

    Article  ADS  CAS  Google Scholar 

  43. Verlet, L. Computer “experiments” on classical fluids. I. Thermodynamical properties of Lennard-Jones molecules. Phys. Rev. 159, 98–103 (1967)

    Article  ADS  CAS  Google Scholar 

  44. Weingart, O., Schapiro, I. & Buss, V. Photochemistry of visual pigment chromophore models by ab initio molecular dynamics. J. Phys. Chem. B 111, 3782–3788 (2007)

    Article  CAS  Google Scholar 

  45. Försberg, N. & Malmqvist, P.-Å. Multiconfiguration perturbation theory with imaginary level shift. Chem. Phys. Lett. 274, 196–204 (1997)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

M.G., O.W., G.O., G.T. and P.A. thank E4-Computer Engineering S.p.A. for computational time and technical assistance. Part of this study was financially supported by the DFG (FOR490) and by the PRIN programme (2008JKBBK4). P.K. is supported by a Career Acceleration Fellowship awarded by the UK Engineering and Physical Sciences Research Council (EP/H003541/1).

Author information

Authors and Affiliations

Authors

Contributions

R.A.M., P.K., M.G. and G.C. conceived the project and contributed the original scientific ideas to this work. D.P., C.M. and D.B. executed the experiments. K.M.S. carried out rhodopsin sample preparation/purification. P.A., O.W. and G.O. planned calculations, P.A. and O.W. executed them. G.T. collected calibration data. All authors discussed the results and contributed to the preparation of the manuscript.

Corresponding authors

Correspondence to Marco Garavelli or Giulio Cerullo.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Figures 1-9 with legends, Supplementary Tables 1-3, a Supplementary Discussion and additional references. (PDF 1757 kb)

Supplementary Movie 1

This movie shows the 11-cis->all-trans photoinduced motion and the frustrated isomerization path - see Supplementary Information file for full legend. (MOV 5994 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Polli, D., Altoè, P., Weingart, O. et al. Conical intersection dynamics of the primary photoisomerization event in vision. Nature 467, 440–443 (2010). https://doi.org/10.1038/nature09346

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature09346

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing