Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A large atomic chlorine source inferred from mid-continental reactive nitrogen chemistry

Abstract

Halogen atoms and oxides are highly reactive and can profoundly affect atmospheric composition. Chlorine atoms can decrease the lifetimes of gaseous elemental mercury1 and hydrocarbons such as the greenhouse gas methane2. Chlorine atoms also influence cycles that catalytically destroy or produce tropospheric ozone3, a greenhouse gas potentially toxic to plant and animal life. Conversion of inorganic chloride into gaseous chlorine atom precursors within the troposphere is generally considered a coastal or marine air phenomenon4. Here we report mid-continental observations of the chlorine atom precursor nitryl chloride at a distance of 1,400 km from the nearest coastline. We observe persistent and significant nitryl chloride production relative to the consumption of its nitrogen oxide precursors. Comparison of these findings to model predictions based on aerosol and precipitation composition data from long-term monitoring networks suggests nitryl chloride production in the contiguous USA alone is at a level similar to previous global estimates for coastal and marine regions5. We also suggest that a significant fraction of tropospheric chlorine atoms6 may arise directly from anthropogenic pollutants.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic of chlorine activation by night-time NO x chemistry.
Figure 2: Time series of key quantities observed in Boulder, Colorado, from 11 to 25 February 2009.
Figure 3: Observed and modelled relationships of ClNO 2 and particulate chloride.
Figure 4: Annual average components of over the US.

Similar content being viewed by others

References

  1. Donohoue, D. L., Bauer, D. & Hynes, A. J. Temperature and pressure dependent rate coefficients for the reaction of Hg with Cl and the reaction of Cl with Cl: a pulsed laser photolysis-pulsed laser induced fluorescence study. J. Phys. Chem. A 109, 7732–7741 (2005)

    Article  CAS  Google Scholar 

  2. Platt, U., Allan, W. & Lowe, D. Hemispheric average Cl atom concentration from 13C/12C ratios in atmospheric methane. Atmos. Chem. Phys. 4, 2393–2399 (2004)

    Article  ADS  CAS  Google Scholar 

  3. Knipping, E. M. & Dabdub, D. Impact of chlorine emissions from sea-salt aerosol on coastal urban ozone. Environ. Sci. Technol. 37, 275–284 (2003)

    Article  ADS  CAS  Google Scholar 

  4. Von Glasow, R. & Crutzen, P. J. in The Atmosphere (ed. Keeling, R. F.) 21–64 (Oxford Univ. Press, 2007)

    Google Scholar 

  5. Osthoff, H. D. et al. High levels of nitryl chloride in the polluted subtropical marine boundary layer. Nature Geosci. 1, 324–328 (2008)

    Article  ADS  CAS  Google Scholar 

  6. Allan, W., Struthers, H. & Lowe, D. C. Methane carbon isotope effects caused by atomic chlorine in the marine boundary layer: global model results compared with Southern Hemisphere measurements. J. Geophys. Res. D 112 D04306 10.1029/2006JD007369 (2007)

    Article  ADS  CAS  Google Scholar 

  7. Finlayson-Pitts, B. J., Ezell, M. J. & Pitts, J. N. Formation of chemically active chlorine compounds by reactions of atmospheric NaCl particles with gaseous N2O5 and ClONO2 . Nature 337, 241–244 (1989)

    Article  ADS  CAS  Google Scholar 

  8. Behnke, W., George, C., Scheer, V. & Zetzsch, C. Production and decay of ClNO2 from the reaction of gaseous N2O5 with NaCl solution: bulk and aerosol experiments. J. Geophys. Res. D 102, 3795–3804 (1997)

    Article  ADS  CAS  Google Scholar 

  9. Graedel, T. E. & Keene, W. C. Tropospheric budget of reactive chlorine. Glob. Biogeochem. Cycles 9, 47–77 (1995)

    Article  ADS  CAS  Google Scholar 

  10. Kercher, J., Riedel, T. & Thornton, J. Chlorine activation by N2O5: simultaneous, in situ detection of ClNO2 and N2O5 by chemical ionization mass spectrometry. Atmos. Meas. Techn. 2, 193–204 (2009)

    Article  CAS  Google Scholar 

  11. Pechtl, S. & von Glasow, R. Reactive chlorine in the marine boundary layer in the outflow of polluted continental air: a model study. Geophys. Res. Lett. 34 L11813 10.1029/2007GL02976 (2007)

    Article  ADS  Google Scholar 

  12. Logan, J. A., Prather, M. J., Wofsy, S. C. & McElroy, M. B. Tropospheric chemistry: a global perspective. J. Geophys. Res. 86, 7210–7254 (1981)

    Article  ADS  CAS  Google Scholar 

  13. Alexander, B. et al. Quantifying atmospheric nitrate formation pathways based on a global model of the oxygen isotopic composition (Δ17O) of atmospheric nitrate. Atmos. Chem. Phys. 9, 5043–5056 (2009)

    Article  ADS  CAS  Google Scholar 

  14. Nelson, H. H. & Johnston, H. S. Kinetics of the reaction of Cl with ClNO and ClNO2 and the photochemistry of ClNO2 . J. Phys. Chem. 85, 3891–3896 (1981)

    Article  CAS  Google Scholar 

  15. Abuduwailli, J., Gabchenko, M. V. & Xu, J. R. Eolian transport of salts — a case study in the area of Lake Ebinur (Xinjiang, Northwest China). J. Arid Environ. 72, 1843–1852 (2008)

    Article  ADS  Google Scholar 

  16. Thornton, J. A., Braban, C. F. & Abbatt, J. P. D. N2O5 hydrolysis on sub-micron organic aerosols: the effect of relative humidity, particle phase, and particle size. Phys. Chem. Chem. Phys. 5, 4593–4603 (2003)

    Article  CAS  Google Scholar 

  17. Wexler, A. S. & Clegg, S. L. Atmospheric aerosol models for systems including the ions H+, NH4 +, Na+, SO4 2-, NO3 -,Cl-, Br-, and H2O. J. Geophys. Res. D 107 4207 10.1029/2001JD000451 (2002)

    Article  ADS  Google Scholar 

  18. Roberts, J. M., Osthoff, H. D., Brown, S. S. & Ravishankara, A. R. Laboratory measurements of ClNO2 yields from N2O5 reactions as a function of chloride molarity in various inorganic salt solutions. Geophys. Res. Lett. 36 L20808 10.1029/2009GL040448 (2009)

    Article  ADS  CAS  Google Scholar 

  19. Moffet, R. C., de Foy, B., Molina, L. T., Molina, M. J. & Prather, K. A. Measurement of ambient aerosols in northern Mexico City by single particle mass spectrometry. Atmos. Chem. Phys. 8, 4499–4516 (2008)

    Article  ADS  CAS  Google Scholar 

  20. Keene, W. C. & Savoie, D. L. The pH of deliquesced sea-salt aerosol in polluted marine air. Geophys. Res. Lett. 25, 2181–2184 (1998)

    Article  ADS  CAS  Google Scholar 

  21. Olivier, J. G. J. & Berdowski, J. J. M. in The Climate System (eds Berdowski, J., Guicherit, R. & Heij, B. J.) 33–78 (Balkema, and Swets and Zeitlinger, Lisse, The Netherlands, 2001)

    Google Scholar 

  22. National Atmospheric Deposition Program Office. National Atmospheric Deposition Program (NRSP-3) (Illinois State Water Survey, Champaign, Illinois, 2010)

  23. Malm, W. C., Sisler, J. F., Huffman, D., Eldred, R. A. & Cahill, T. A. Spatial and seasonal trends in particle concentration and optical extinction in the United States. J. Geophys. Res. D 99, 1347–1370 (1994)

    Article  ADS  CAS  Google Scholar 

  24. Erickson, D. J., Seuzaret, C., Keene, W. C. & Gong, S. L. A general circulation model based calculation of HCl and ClNO2 production from sea salt dechlorination: reactive chlorine emissions inventory. J. Geophys. Res. D 104, 8347–8372 (1999)

    Article  ADS  CAS  Google Scholar 

  25. Zhang, Q. et al. Ubiquity and dominance of oxygenated species in organic aerosols in anthropogenically-influenced Northern Hemisphere midlatitudes. Geophys. Res. Lett. 34 L13801 10.1029/2007GL029979 (2007)

    Article  ADS  CAS  Google Scholar 

  26. Bertram, T. H. et al. Direct measurements of N2O5 reactivity on ambient aerosol particles. Geophys. Res. Lett. 36 L19803 10.1029/2009GL040248 (2009)

    Article  ADS  CAS  Google Scholar 

  27. Brown, S. S. et al. Variability in nocturnal nitrogen oxide processing and its role in regional air quality. Science 311, 67–70 (2006)

    Article  ADS  CAS  Google Scholar 

  28. Singh, H. B. & Hanst, P. L. Peroxyacetyl nitrate (PAN) in the unpolluted atmosphere — an important reservoir for nitrogen oxides. Geophys. Res. Lett. 8, 941–944 (1981)

    Article  ADS  CAS  Google Scholar 

  29. Grannas, A. M. et al. An overview of snow photochemistry: evidence, mechanisms and impacts. Atmos. Chem. Phys. 7, 4329–4373 (2007)

    Article  ADS  CAS  Google Scholar 

  30. Shindell, D. T. et al. Improved attribution of climate forcing to emissions. Science 326, 716–718 (2009)

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

Funding for the ClNO2 observations and analysis was provided by NSF grants ATM-0633897 and ATM-0846183 to J.A.T. Boulder field measurements were supported in part by the NOAA Atmospheric Chemistry and Climate Program. J.P.K. thanks the Camille and Henry Dreyfus Foundation for a postdoctoral fellowship in environmental chemistry. N.L.W. thanks the National Research Council for a postdoctoral fellowship.

Author Contributions This was largely a collaborative effort. All authors contributed to the collection of observations during the 2009 intensive campaign described here. J.P.K., W.P.D., J.A.T. and S.S.B conceived of the need and initial designs for the measurement campaign; J.A.T. performed much of the final analysis and modelling; T.P.R. performed the predictions of continental-scale ClNO2 production; and J.A.T. wrote the paper with significant input from all co-authors, especially S.S.B.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joel A. Thornton.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Methods and Discussion, Supplementary Notes and References, Supplementary Figures 1-10 with Legends, and Supplementary Table 1. (PDF 1691 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thornton, J., Kercher, J., Riedel, T. et al. A large atomic chlorine source inferred from mid-continental reactive nitrogen chemistry. Nature 464, 271–274 (2010). https://doi.org/10.1038/nature08905

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature08905

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing