Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping

Abstract

Doping is a widely applied technological process in materials science that involves incorporating atoms or ions of appropriate elements into host lattices to yield hybrid materials with desirable properties and functions. For nanocrystalline materials, doping is of fundamental importance in stabilizing a specific crystallographic phase1, modifying electronic properties2,3,4, modulating magnetism5 as well as tuning emission properties6,7,8,9. Here we describe a material system in which doping influences the growth process to give simultaneous control over the crystallographic phase, size and optical emission properties of the resulting nanocrystals. We show that NaYF4 nanocrystals can be rationally tuned in size (down to ten nanometres), phase (cubic or hexagonal) and upconversion10,11,12 emission colour (green to blue) through use of trivalent lanthanide dopant ions introduced at precisely defined concentrations. We use first-principles calculations to confirm that the influence of lanthanide doping on crystal phase and size arises from a strong dependence on the size and dipole polarizability of the substitutional dopant ion. Our results suggest that the doping-induced structural and size transition, demonstrated here in NaYF4 upconversion nanocrystals, could be extended to other lanthanide-doped nanocrystal systems for applications ranging from luminescent biological labels12 to volumetric three-dimensional displays13.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Phase transformation in NaREF 4 structures by lanthanide doping.
Figure 2: TEM characterization of NaYF 4 :Yb/Er (18/2 mol%) nanocrystals doped with various concentrations of Gd 3+ ions.
Figure 3: Photoluminescence studies of NaYF4:Yb/Er (18/2 mol%) nanocrystals with varying dopant concentration of Gd3+.
Figure 4: Photoluminescence studies of NaYF 4 nanocrystals dispersed in solutions and embedded in PDMS composite materials.

Similar content being viewed by others

References

  1. Feng, X. et al. Converting ceria polyhedral nanoparticles into single-crystal nanospheres. Science 312, 1504–1508 (2006)

    Article  ADS  CAS  Google Scholar 

  2. Alivisatos, A. P. Semiconductor clusters, nanocrystals, and quantum dots. Science 271, 933–937 (1996)

    Article  ADS  CAS  Google Scholar 

  3. Norris, D. J., Yao, N., Charnock, F. T. & Kennedy, T. A. High-quality manganese-doped ZnSe nanocrystals. Nano Lett. 1, 3–7 (2001)

    Article  ADS  CAS  Google Scholar 

  4. Yang, Y., Chen, O., Angerhofer, A. & Cao, Y. C. Radial-position-controlled doping in CdS/ZnS core/shell nanocrystals. J. Am. Chem. Soc. 128, 12428–12429 (2006)

    Article  CAS  Google Scholar 

  5. Wernsdorfer, W. et al. Macroscopic quantum tunneling of magnetization of single ferrimagnetic nanoparticles of barium ferrite. Phys. Rev. Lett. 79, 4014–4017 (1997)

    Article  ADS  CAS  Google Scholar 

  6. Heer, S., Kömpe, K., Güdel, H.-U. & Haase, M. Highly efficient multicolour upconversion emission in transparent colloids of lanthanide-doped NaYF4 nanocrystals. Adv. Mater. 16, 2102–2105 (2004)

    Article  CAS  Google Scholar 

  7. Sivakumar, S., van Veggel, F. C. J. M. & Raudsepp, M. Bright white light through up-conversion of a single NIR source from sol-gel-derived thin film made with Ln3+-doped LaF3 nanoparticles. J. Am. Chem. Soc. 127, 12464–12465 (2005)

    Article  CAS  Google Scholar 

  8. Ehlert, O., Thomann, R., Darbandi, M. & Nann, T. A. Four-color colloidal multiplexing nanoparticle system. ACS Nano 2, 120–124 (2008)

    Article  CAS  Google Scholar 

  9. Wang, F. & Liu, X. Upconversion multicolor fine-tuning: visible to near-infrared emission from lanthanide-doped NaYF4 nanoparticles. J. Am. Chem. Soc. 130, 5642–5643 (2008)

    Article  CAS  Google Scholar 

  10. Auzel, F. Upconversion and anti-stokes processes with f and d ions in solids. Chem. Rev. 104, 139–173 (2004)

    Article  CAS  Google Scholar 

  11. Suyver, J. F. et al. Novel materials doped with trivalent lanthanides and transition metal ions showing near-infrared to visible photon upconversion. Opt. Mater. 27, 1111–1130 (2005)

    Article  ADS  CAS  Google Scholar 

  12. Wang, F. & Liu, X. Recent advances in the chemistry of lanthanide-doped upconversion nanocrystals. Chem. Soc. Rev. 38, 976–989 (2009)

    Article  CAS  Google Scholar 

  13. Downing, E., Hesselink, L., Ralston, J. & Macfarlane, R. A three-color, solid-state, three-dimensional display. Science 273, 1185–1189 (1996)

    Article  ADS  CAS  Google Scholar 

  14. Liu, C., Wang, H., Zhang, X. & Chen, D. Morphology- and phase-controlled synthesis of monodisperse lanthanide-doped NaGdF4 nanocrystals with multicolor photoluminescence. J. Mater. Chem. 19, 489–496 (2009)

    Article  CAS  Google Scholar 

  15. Park, Y. I. et al. Nonblinking and nonbleaching upconverting nanoparticles as an optical imaging nanoprobe and T1 magnetic resonance imaging contrast agent. Adv. Mater. 21, 4467–4471 (2009)

    Article  CAS  Google Scholar 

  16. Lim, B. et al. Pd-Pt bimetallic nanodendrites with high activity for oxygen reduction. Science 324, 1302–1305 (2009)

    Article  ADS  CAS  Google Scholar 

  17. Sun, S., Murray, C. B., Weller, D., Folks, L. & Moser, A. Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices. Science 287, 1989–1992 (2000)

    Article  ADS  CAS  Google Scholar 

  18. Tang, Z., Zhang, Z., Wang, Y., Glotzer, S. C. & Kotov, N. A. Self-assembly of CdTe nanocrystals into free-floating sheets. Science 314, 274–278 (2006)

    Article  ADS  CAS  Google Scholar 

  19. Wang, X., Zhuang, J., Peng, Q. & Li, Y. A general strategy for nanocrystal synthesis. Nature 437, 121–124 (2005)

    Article  ADS  CAS  Google Scholar 

  20. Cademartiri, L. et al. Multigram scale, solventless and diffusion-controlled route to highly monodisperse PbS nanocrystals. J. Phys. Chem. B 110, 671–673 (2006)

    Article  CAS  Google Scholar 

  21. Chen, Y., Kim, M., Lian, G., Johnson, M. B. & Peng, X. Side reactions in controlling the quality, yield, and stability of high quality colloidal nanocrystals. J. Am. Chem. Soc. 127, 13331–13337 (2005)

    Article  CAS  Google Scholar 

  22. Wang, L. & Li, Y. Controlled synthesis and luminescence of lanthanide doped NaYF4 nanocrystals. Chem. Mater. 19, 727–734 (2007)

    Article  CAS  Google Scholar 

  23. Li, Z., Zhang, Y. & Jiang, J. Multicolor core/shell-structured upconversion fluorescent nanoparticles. Adv. Mater. 20, 4765–4769 (2008)

    Article  CAS  Google Scholar 

  24. Mai, H. et al. High-quality sodium rare-earth fluoride nanocrystals: controlled synthesis and optical properties. J. Am. Chem. Soc. 128, 6426–6436 (2006)

    Article  CAS  Google Scholar 

  25. Boyer, J. C., Vetrone, F., Cuccia, L. A. & Capobianco, J. A. Synthesis of colloidal upconverting NaYF4 nanocrystals doped with Er3+, Yb3+ and Tm3+, Yb3+ via thermal decomposition of lanthanide trifluoroacetate precursors. J. Am. Chem. Soc. 128, 7444–7445 (2006)

    Article  CAS  Google Scholar 

  26. Yi, G. S. & Chow, G. M. Synthesis of hexagonal-phase NaYF4:Yb,Er and NaYF4:Yb,Tm nanocrystals with efficient up-conversion fluorescence. Adv. Funct. Mater. 16, 2324–2329 (2006)

    Article  CAS  Google Scholar 

  27. Ayyub, P., Palkar, V. R., Chattopadhyay, S. & Multani, M. Effect of crystal size reduction on lattice symmetry and cooperative properties. Phys. Rev. B 51, 6135–6138 (1995)

    Article  ADS  CAS  Google Scholar 

  28. Shannon, R. D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. A 32, 751–767 (1976)

    Article  ADS  Google Scholar 

  29. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996)

    Article  ADS  CAS  Google Scholar 

  30. Blochl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994)

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank G. A. Ozin, X. Chen, F. Stellacci, C. Yan, Y. Xia, L. Cademartiri, T. Nann, Y. Li and Y. C. Cao for discussions. This study was supported in part by the National University of Singapore (NUS), the Ministry of Education of Singapore, the Singapore-MIT Alliance, and the Agency for Science, Technology and Research (A*STAR). X.L. is grateful to the NUS for a Young Investigator Award.

Author Contributions F.W. and X.L. conceived the experiments and wrote the paper. F.W. and J.W. were primarily responsible for the experiments. Y.H., J.X. and H.C. performed the TEM characterization. C.S.L. and M.H. contributed to the volumetric 3D display studies. Y.L. and C.Z. performed theoretical calculations. All authors contributed to the analysis of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaogang Liu.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Methods and Supplementary Figures S1-S8 with Legends. (PDF 4454 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, F., Han, Y., Lim, C. et al. Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping. Nature 463, 1061–1065 (2010). https://doi.org/10.1038/nature08777

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature08777

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing