Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structure of the formate transporter FocA reveals a pentameric aquaporin-like channel

Abstract

FocA is a representative member of the formate–nitrite transporter family, which transports short-chain acids in bacteria, archaea, fungi, algae and parasites. The structure and transport mechanism of the formate–nitrite transporter family remain unknown. Here we report the crystal structure of Escherichia coli FocA at 2.25 Å resolution. FocA forms a symmetric pentamer, with each protomer consisting of six transmembrane segments. Despite a lack of sequence homology, the overall structure of the FocA protomer closely resembles that of aquaporin and strongly argues that FocA is a channel, rather than a transporter. Structural analysis identifies potentially important channel residues, defines the channel path and reveals two constriction sites. Unlike aquaporin, FocA is impermeable to water but allows the passage of formate. A structural and biochemical investigation provides mechanistic insights into the channel activity of FocA.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Purchase on Springer Link

Instant access to full article PDF

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The overall structure of FocA.
Figure 2: Structural features of the FocA protomer.
Figure 3: The FocA protomer is structurally similar to aquaporin.
Figure 4: Features of the axial channel in the FocA protomer.
Figure 5: FocA contains two constriction sites and may exist in a closed-pore state.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Data deposits

The atomic coordinates of FocA in the P212121 and P32 space groups have been deposited in the Protein Data Bank under accession codes 3KCU and 3KCV, respectively.

References

  1. Stams, A. J. & Plugge, C. M. Electron transfer in syntrophic communities of anaerobic bacteria and archaea. Nature Rev. Microbiol. 7, 568–577 (2009)

    Article  CAS  Google Scholar 

  2. White, W. B. & Ferry, J. G. Identification of formate dehydrogenase-specific mRNA species and nucleotide sequence of the fdhC gene of Methanobacterium formicicum . J. Bacteriol. 174, 4997–5004 (1992)

    Article  CAS  Google Scholar 

  3. Leonhartsberger, S., Korsa, I. & Bock, A. The molecular biology of formate metabolism in enterobacteria. J. Mol. Microbiol. Biotechnol. 4, 269–276 (2002)

    CAS  PubMed  Google Scholar 

  4. Sawers, R. G. Formate and its role in hydrogen production in Escherichia coli . Biochem. Soc. Trans. 33, 42–46 (2005)

    Article  CAS  Google Scholar 

  5. Sawers, G. The hydrogenases and formate dehydrogenases of Escherichia coli . Antonie Van Leeuwenhoek 66, 57–88 (1994)

    Article  CAS  Google Scholar 

  6. Stephenson, M. & Stickland, L. H. Hydrogenlyases: bacterial enzymes liberating molecular hydrogen. Biochem. J. 26, 712–724 (1932)

    Article  CAS  Google Scholar 

  7. Suppmann, B. & Sawers, G. Isolation and characterization of hypophosphite-resistant mutants of Escherichia coli: identification of the FocA protein, encoded by the pfl operon, as a putative formate transporter. Mol. Microbiol. 11, 965–982 (1994)

    Article  CAS  Google Scholar 

  8. Saier, M. H. et al. Phylogenetic characterization of novel transport protein families revealed by genome analyses. Biochim. Biophys. Acta 1422, 1–56 (1999)

    Article  CAS  Google Scholar 

  9. Jia, W. & Cole, J. A. Nitrate and nitrite transport in Escherichia coli . Biochem. Soc. Trans. 33, 159–161 (2005)

    Article  CAS  Google Scholar 

  10. Jia, W., Tovell, N., Clegg, S., Trimmer, M. & Cole, J. A single channel for nitrate uptake, nitrite export and nitrite uptake by Escherichia coli NarU and a role for NirC in nitrite export and uptake. Biochem. J. 417, 297–304 (2009)

    Article  CAS  Google Scholar 

  11. Clegg, S., Yu, F., Griffiths, L. & Cole, J. A. The roles of the polytopic membrane proteins NarK, NarU and NirC in Escherichia coli K-12: two nitrate and three nitrite transporters. Mol. Microbiol. 44, 143–155 (2002)

    Article  CAS  Google Scholar 

  12. Clegg, S. J., Jia, W. & Cole, J. A. Role of the Escherichia coli nitrate transport protein, NarU, in survival during severe nutrient starvation and slow growth. Microbiology 152, 2091–2100 (2006)

    Article  CAS  Google Scholar 

  13. Nolling, J. & Reeve, J. N. Growth- and substrate-dependent transcription of the formate dehydrogenase (fdhCAB) operon in Methanobacterium thermoformicicum Z-245. J. Bacteriol. 179, 899–908 (1997)

    Article  CAS  Google Scholar 

  14. von Heijne, G. & Gavel, Y. Topogenic signals in integral membrane proteins. Eur. J. Biochem. 174, 671–678 (1988)

    Article  CAS  Google Scholar 

  15. Smart, O. S., Goodfellow, J. M. & Wallace, B. A. The pore dimensions of gramicidin A. Biophys. J. 65, 2455–2460 (1993)

    Article  CAS  Google Scholar 

  16. Fu, D. et al. Structure of a glycerol-conducting channel and the basis for its selectivity. Science 290, 481–486 (2000)

    Article  ADS  CAS  Google Scholar 

  17. Agre, P. The aquaporin water channels. Proc. Am. Thorac. Soc. 3, 5–13 (2006)

    Article  CAS  Google Scholar 

  18. Gonen, T. & Walz, T. The structure of aquaporins. Q. Rev. Biophys. 39, 361–396 (2006)

    Article  CAS  Google Scholar 

  19. Stroud, R. M., Nollert, P. & Miercke, L. The glycerol facilitator GlpF its aquaporin family of channels, and their selectivity. Adv. Protein Chem. 63, 291–316 (2003)

    Article  CAS  Google Scholar 

  20. Carbrey, J. M. & Agre, P. Discovery of the aquaporins and development of the field. Handb. Exp. Pharmacol. 190, 3–28 (2009)

    Article  CAS  Google Scholar 

  21. Holm, L. & Sander, C. Protein structure comparison by alignment of distance matrices. J. Mol. Biol. 233, 123–138 (1993)

    Article  CAS  Google Scholar 

  22. Savage, D. F., Egea, P. F., Robles-Colmenares, Y., O’Connell, J. D. & Stroud, R. M. Architecture and selectivity in aquaporins: 2.5 Å X-ray structure of aquaporin Z. PLoS Biol. 1, E72 (2003)

    Article  Google Scholar 

  23. Sui, H., Han, B. G., Lee, J. K., Walian, P. & Jap, B. K. Structural basis of water-specific transport through the AQP1 water channel. Nature 414, 872–878 (2001)

    Article  ADS  CAS  Google Scholar 

  24. Murata, K. et al. Structural determinants of water permeation through aquaporin-1. Nature 407, 599–605 (2000)

    Article  ADS  CAS  Google Scholar 

  25. Tajkhorshid, E. et al. Control of the selectivity of the aquaporin water channel family by global orientational tuning. Science 296, 525–530 (2002)

    Article  ADS  CAS  Google Scholar 

  26. Gonen, T. et al. Lipid–protein interactions in double-layered two-dimensional AQP0 crystals. Nature 438, 633–638 (2005)

    Article  ADS  CAS  Google Scholar 

  27. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997)

    Article  CAS  Google Scholar 

  28. Collaborative Computational Project Number 4. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D 50, 760–763 (1994)

  29. Schneider, T. R. & Sheldrick, G. M. Substructure solution with SHELXD. Acta Crystallogr. D 58, 1772–1779 (2002)

    Article  Google Scholar 

  30. Cowtan, K. dm: an automated procedure for phase improvement by density modification. Joint CCP4 and ESF-EACBM Newsl. Protein Crystallogr. 31, 34–38 (1994)

    Google Scholar 

  31. Cowtan, K. The Buccaneer software for automated model building. Acta Crystallogr. D 62, 1002–1011 (2006)

    Article  Google Scholar 

  32. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D 60, 2126–2132 (2004)

    Article  Google Scholar 

  33. Adams, P. D. et al. PHENIX: building new software for automated crystallographic structure determination. Acta Crystallogr. D 58, 1948–1954 (2002)

    Article  Google Scholar 

  34. McCoy, A. J. et al. Phaser crystallographic software. J. Appl. Cryst. 40, 658–674 (2007)

    Article  CAS  Google Scholar 

  35. Borgnia, M. J., Kozono, D., Calamita, G., Maloney, P. C. & Agre, P. Functional reconstitution and characterization of AqpZ, the E. coli water channel protein. J. Mol. Biol. 291, 1169–1179 (1999)

    Article  CAS  Google Scholar 

  36. DeLano, W. L. PyMOL Molecular Viewer. http://www.pymol.org (2002)

  37. Borgnia, M. J. & Agre, P. Reconstitution and functional comparison of purified GlpF and AqpZ, the glycerol and water channels from Escherichia coli . Proc. Natl Acad. Sci. USA 98, 2888–2893 (2001)

    Article  ADS  CAS  Google Scholar 

  38. Khademi, S. et al. Mechanism of ammonia transport by Amt/MEP/Rh: structure of AmtB at 1.35 Å. Science 305, 1587–1594 (2004)

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank N. Shimizu, S. Baba and T. Kumasaka at the Spring-8 beamline BL41XU for assistance, and J. He and S. Huang for help at Shanghai Synchrotron Radiation Facility (SSRF). This work was supported by funds from the Ministry of Science and Technology of China (grants 2009CB918801 and 2009CB918802), Tsinghua University 985 Phase II funds, Project 30888001 supported by National Natural Science Foundation of China, and the Beijing Municipal Commissions of Education and Science and Technology. N.Y. acknowledges support from the Yuyuan Foundation and Li’s Foundation.

Author Contributions Experiments were performed by Y.W., Y.H., J.W., C.C., W.H., P.L., Y.-N.X., P.W. and N.Y. Data were analysed by Y.W., Y.H., J.W., N.Y. and Y.S. The manuscript was prepared by N.Y. and Y.S.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nieng Yan or Yigong Shi.

Supplementary information

Supplementary Information

This file contains Supplementary Table 1 and Supplementary Figures 1- 11 with Legends. (PDF 1064 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Y., Huang, Y., Wang, J. et al. Structure of the formate transporter FocA reveals a pentameric aquaporin-like channel . Nature 462, 467–472 (2009). https://doi.org/10.1038/nature08610

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature08610

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing