Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Neuroscience in the era of functional genomics and systems biology

Abstract

Advances in genetics and genomics have fuelled a revolution in discovery-based, or hypothesis-generating, research that provides a powerful complement to the more directly hypothesis-driven molecular, cellular and systems neuroscience. Genetic and functional genomic studies have already yielded important insights into neuronal diversity and function, as well as disease. One of the most exciting and challenging frontiers in neuroscience involves harnessing the power of large-scale genetic, genomic and phenotypic data sets, and the development of tools for data integration and mining. Methods for network analysis and systems biology offer the promise of integrating these multiple levels of data, connecting molecular pathways to nervous system function.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Correlating genetic polymorphism and gene expression data.
Figure 2: WGCNA schematic.
Figure 3: The systems biology approach to high-dimensional data sets allows integration of multiple layers of data.

Similar content being viewed by others

References

  1. Coppola, G. & Geschwind, D. H. Microarrays and the microscope: balancing throughput with resolution. J. Physiol. (Lond.) 575, 353–359 (2006).

    Article  CAS  Google Scholar 

  2. Nelson, S. B., Hempel, C. & Sugino, K. Probing the transcriptome of neuronal cell types. Curr. Opin. Neurobiol. 16, 571–576 (2006).

    Article  CAS  Google Scholar 

  3. Mirnics, K. & Pevsner, J. Progress in the use of microarray technology to study the neurobiology of disease. Nature Neurosci. 7, 434–439 (2004).

    Article  CAS  Google Scholar 

  4. Geschwind, D. H. Mice, microarrays, and the genetic diversity of the brain. Proc. Natl Acad. Sci. USA 97, 10676–10678 (2000).

    Article  ADS  CAS  Google Scholar 

  5. Hood, L., Heath, J. R., Phelps, M. E. & Lin, B. Systems biology and new technologies enable predictive and preventative medicine. Science 306, 640–643 (2004).

    Article  ADS  CAS  Google Scholar 

  6. Arlotta, P. et al. Neuronal subtype-specific genes that control corticospinal motor neuron development in vivo. Neuron 45, 207–221 (2005).

    Article  CAS  Google Scholar 

  7. Cahoy, J. D. et al. A transcriptome database for astrocytes, neurons, and oligodendrocytes: a new resource for understanding brain development and function. J. Neurosci. 28, 264–278 (2008).

    Article  CAS  Google Scholar 

  8. Heiman, M. et al. A translational profiling approach for the molecular characterization of CNS cell types. Cell 135, 738–748 (2008).

    Article  CAS  Google Scholar 

  9. Lobo, M. K., Karsten, S. L., Gray, M., Geschwind, D. H. & Yang, X. W. FACS-array profiling of striatal projection neuron subtypes in juvenile and adult mouse brains. Nature Neurosci. 9, 443–452 (2006).

    Article  CAS  Google Scholar 

  10. Sugino, K. et al. Molecular taxonomy of major neuronal classes in the adult mouse forebrain. Nature Neurosci. 9, 99–107 (2006).

    Article  CAS  Google Scholar 

  11. Emes, R. D. et al. Evolutionary expansion and anatomical specialization of synapse proteome complexity. Nature Neurosci. 11, 799–806 (2008). In this paper, a combination of genomics and proteomics is used to identify synaptic proteins that have changed with evolution and study how they might relate to brain anatomy and function.

    Article  CAS  Google Scholar 

  12. Nagasaka, Y. et al. A unique gene expression signature discriminates familial Alzheimer's disease mutation carriers from their wild-type siblings. Proc. Natl Acad. Sci. USA 102, 14854–14859 (2005).

    Article  ADS  CAS  Google Scholar 

  13. Nishimura, Y. et al. Genome-wide expression profiling of lymphoblastoid cell lines distinguishes different forms of autism and reveals shared pathways. Hum. Mol. Genet. 16, 1682–1698 (2007).

    Article  CAS  Google Scholar 

  14. Karsten, S. L. et al. A genomic screen for modifiers of tauopathy identifies puromycin-sensitive aminopeptidase as an inhibitor of tau-induced neurodegeneration. Neuron 51, 549–560 (2006).

    Article  CAS  Google Scholar 

  15. Lim, J. et al. A protein–protein interaction network for human inherited ataxias and disorders of Purkinje cell degeneration. Cell 125, 801–814 (2006).

    Article  CAS  Google Scholar 

  16. Mirnics, K., Middleton, F. A., Marquez, A., Lewis, D. A. & Levitt, P. Molecular characterization of schizophrenia viewed by microarray analysis of gene expression in prefrontal cortex. Neuron 28, 53–67 (2000). This paper was the first to demonstrate the utility of microarray analysis to uncover new genes and properties associated with neuropsychiatric disease.

    Article  CAS  Google Scholar 

  17. Wang, J., Williams, R. W. & Manly, K. F. WebQTL: web-based complex trait analysis. Neuroinformatics 1, 299–308 (2003).

    Article  Google Scholar 

  18. Lein, E. S. et al. Genome-wide atlas of gene expression in the adult mouse brain. Nature 445, 168–176 (2007).

    Article  ADS  CAS  Google Scholar 

  19. Cirelli, C., Gutierrez, C. M. & Tononi, G. Extensive and divergent effects of sleep and wakefulness on brain gene expression. Neuron 41, 35–43 (2004).

    Article  CAS  Google Scholar 

  20. Sandberg, R. et al. Regional and strain-specific gene expression mapping in the adult mouse brain. Proc. Natl Acad. Sci. USA 97, 11038–11043 (2000).

    Article  ADS  CAS  Google Scholar 

  21. Geschwind, D. H. Sharing gene expression data: an array of options. Nature Rev. Neurosci. 2, 435–438 (2001).

    Article  CAS  Google Scholar 

  22. Miller, J. A., Oldham, M. C. & Geschwind, D. H. A systems level analysis of transcriptional changes in Alzheimer's disease and normal aging. J. Neurosci. 28, 1410–1420 (2008).

    Article  CAS  Google Scholar 

  23. Oldham, M. C., Horvath, S. & Geschwind, D. H. Conservation and evolution of gene coexpression networks in human and chimpanzee brains. Proc. Natl Acad. Sci. USA 103, 17973–17978 (2006).

    Article  ADS  CAS  Google Scholar 

  24. Oldham, M. C. et al. Functional organization of the transcriptome in human brain. Nature Neurosci. 11, 1271–1282 (2008). This paper demonstrates that the brain transcriptome in its normal state has a reproducible structure that can be used to guide discovery.

    Article  CAS  Google Scholar 

  25. Winden, K. et al. The organization of the transcriptional network in specific neuronal classes. Mol. Syst. Biol. 5, 291 (2009).

    Article  Google Scholar 

  26. Stuart, J. M., Segal, E., Koller, D. & Kim, S. K. A gene-coexpression network for global discovery of conserved genetic modules. Science 302, 249–255 (2003).

    Article  ADS  CAS  Google Scholar 

  27. Lee, H. K., Hsu, A. K., Sajdak, J., Qin, J. & Pavlidis, P. Coexpression analysis of human genes across many microarray data sets. Genome Res. 14, 1085–1094 (2004).

    Article  CAS  Google Scholar 

  28. Thompson, C. L. et al. Genomic anatomy of the hippocampus. Neuron 60, 1010–1021 (2008). This paper is an example of the power of using tools such as the ABA as a reference together with other wet-lab tools to uncover new neuroanatomical connections, in this case new hippocampal subdivisions.

    Article  CAS  Google Scholar 

  29. Gong, S. et al. A gene expression atlas of the central nervous system based on bacterial artificial chromosomes. Nature 425, 917–925 (2003).

    Article  ADS  CAS  Google Scholar 

  30. Okaty, B. W., Miller, M. N., Sugino, K., Hempel, C. M. & Nelson, S. B. Transcriptional and electrophysiological maturation of neocortical fast-spiking GABAergic interneurons. J. Neurosci. 29, 7040–7052 (2009).

    Article  CAS  Google Scholar 

  31. Doyle, J. P. et al. Application of a translational profiling approach for the comparative analysis of CNS cell types. Cell 135, 749–762 (2008).

    Article  CAS  Google Scholar 

  32. Cowley, M. J. et al. Intra- and inter-individual genetic differences in gene expression. Mamm. Genome 20, 281–295 (2009).

    Article  CAS  Google Scholar 

  33. Nadler, J. J. et al. Large-scale gene expression differences across brain regions and inbred strains correlate with a behavioral phenotype. Genetics 174, 1229–1236 (2006).

    Article  CAS  Google Scholar 

  34. Johnson, M. B. et al. Functional and evolutionary insights into human brain development through global transcriptome analysis. Neuron 62, 494–509 (2009).

    Article  CAS  Google Scholar 

  35. Kislinger, T. et al. Global survey of organ and organelle protein expression in mouse: combined proteomic and transcriptomic profiling. Cell 125, 173–186 (2006).

    Article  CAS  Google Scholar 

  36. Brunner, E. et al. A high-quality catalog of the Drosophila melanogaster proteome. Nature Biotechnol. 25, 576–583 (2007).

    Article  CAS  Google Scholar 

  37. Fernandez, E. et al. Targeted tandem affinity purification of PSD-95 recovers core postsynaptic complexes and schizophrenia susceptibility proteins. Mol. Syst. Biol. 5, 269 (2009).

    Article  Google Scholar 

  38. Anderson, C. N. & Grant, S. G. High throughput protein expression screening in the nervous system — needs and limitations. J. Physiol. (Lond.) 575, 367–372 (2006).

    Article  CAS  Google Scholar 

  39. Husi, H., Ward, M. A., Choudhary, J. S., Blackstock, W. P. & Grant, S. G. Proteomic analysis of NMDA receptor–adhesion protein signaling complexes. Nature Neurosci. 3, 661–669 (2000).

    Article  CAS  Google Scholar 

  40. Takamori, S. et al. Molecular anatomy of a trafficking organelle. Cell 127, 831–846 (2006).

    Article  CAS  Google Scholar 

  41. Trinidad, J. C. et al. Quantitative analysis of synaptic phosphorylation and protein expression. Mol. Cell. Proteomics 7, 684–696 (2008).

    Article  CAS  Google Scholar 

  42. Croning, M. D., Marshall, M. C., McLaren, P., Armstrong, J. D. & Grant, S. G. G2Cdb: the Genes to Cognition database. Nucleic Acids Res. 37, D846–D851 (2009).

    Article  CAS  Google Scholar 

  43. Magdaleno, S. et al. BGEM: an in situ hybridization database of gene expression in the embryonic and adult mouse nervous system. PLoS Biol. 4, e86 (2006).

    Article  Google Scholar 

  44. Zapala, M. A. et al. Adult mouse brain gene expression patterns bear an embryologic imprint. Proc. Natl Acad. Sci. USA 102, 10357–10362 (2005).

    Article  ADS  CAS  Google Scholar 

  45. Valor, L. M., Charlesworth, P., Humphreys, L., Anderson, C. N. & Grant, S. G. Network activity-independent coordinated gene expression program for synapse assembly. Proc. Natl Acad. Sci. USA 104, 4658–4663 (2007). This paper exemplifies the combination of multiple layers of functional data — in this case neuronal activity recordings and morphological measurements — with gene expression data to directly uncover how changes in function and gene expression relate to each other over time.

    Article  ADS  CAS  Google Scholar 

  46. Cheung, V. G. et al. Mapping determinants of human gene expression by regional and genome-wide association. Nature 437, 1365–1369 (2005).

    Article  ADS  CAS  Google Scholar 

  47. Chesler, E. J. et al. Complex trait analysis of gene expression uncovers polygenic and pleiotropic networks that modulate nervous system function. Nature Genet. 37, 233–242 (2005). This paper provides an early example of combining data across multiple levels of function, factoring genotypes, phenotypes and gene expression in mouse to identify systems-level interactions.

    Article  CAS  Google Scholar 

  48. Hovatta, I. et al. DNA variation and brain region-specific expression profiles exhibit different relationships between inbred mouse strains: implications for eQTL mapping studies. Genome Biol. 8, R25 (2007).

    Article  Google Scholar 

  49. Ghazalpour, A. et al. Integrating genetic and network analysis to characterize genes related to mouse weight. PLoS Genet. 2, e130 (2006).

    Article  Google Scholar 

  50. Chen, Y. et al. Variations in DNA elucidate molecular networks that cause disease. Nature 452, 429–435 (2008).

    Article  ADS  CAS  Google Scholar 

  51. van der Zwaag, B. et al. Gene-network analysis identifies susceptibility genes related to glycobiology in autism. PLoS ONE 4, e5324 (2009).

    Article  ADS  Google Scholar 

  52. Webster, J. A. et al. Genetic control of human brain transcript expression in Alzheimer disease. Am. J. Hum. Genet. 84, 445–458 (2009).

    Article  CAS  Google Scholar 

  53. Myers, A. J. et al. A survey of genetic human cortical gene expression. Nature Genet. 39, 1494–1499 (2007).

    Article  CAS  Google Scholar 

  54. Marioni, J. C., Mason, C. E., Mane, S. M., Stephens, M. & Gilad, Y. RNA-seq: an assessment of technical reproducibility and comparison with gene expression arrays. Genome Res. 18, 1509–1517 (2008).

    Article  CAS  Google Scholar 

  55. Liu, F. et al. Comparison of hybridization-based and sequencing-based gene expression technologies on biological replicates. BMC Genomics 8, 153 (2007).

    Article  CAS  Google Scholar 

  56. Preuss, T. M., Caceres, M., Oldham, M. C. & Geschwind, D. H. Human brain evolution: insights from microarrays. Nature Rev. Genet. 5, 850–860 (2004).

    Article  CAS  Google Scholar 

  57. Barabási, A. L. & Oltvai, Z. N. Network biology: understanding the cell's functional organization. Nature Rev. Genet. 5, 101–113 (2004).

    Article  Google Scholar 

  58. Jeong, H., Tombor, B., Albert, R., Oltvai, Z. N. & Barabási, A.-L. The large-scale organization of metabolic networks. Nature 407, 651–654 (2000). This paper is a seminal demonstration of the higher-order organization of metabolism across phylogeny.

    Article  ADS  CAS  Google Scholar 

  59. Zhang, B. & Horvath, S. A general framework for weighted gene co-expression network analysis. Stat. Appl. Genet. Mol. Biol. 4, 17 (2005).

    Article  MathSciNet  Google Scholar 

  60. Khaitovich, P. et al. A neutral model of transcriptome evolution. PLoS Biol. 2, e132 (2004).

    Article  Google Scholar 

  61. Lam, Y. C. et al. ATAXIN-1 interacts with the repressor Capicua in its native complex to cause SCA1 neuropathology. Cell 127, 1335–1347 (2006).

    Article  CAS  Google Scholar 

  62. Canterini, S., Bosco, A., De Matteis, V., Mangia, F. & Fiorenza, M. T. THG-1pit moves to nucleus at the onset of cerebellar granule neurons apoptosis. Mol. Cell. Neurosci. 40, 249–257 (2009).

    Article  CAS  Google Scholar 

  63. Bilder, R. M. et al. Phenomics: the systematic study of phenotypes on a genome-wide scale. Neuroscience doi:10.1016/j.neuroscience.2009.01.027 (20 January 2009).

  64. Rzhetsky, A. et al. GeneWays: a system for extracting, analyzing, visualizing, and integrating molecular pathway data. J. Biomed. Inform. 37, 43–53 (2004).

    Article  CAS  Google Scholar 

  65. Rodriguez-Esteban, R., Iossifov, I. & Rzhetsky, A. Imitating manual curation of text-mined facts in biomedicine. PLoS Comput. Biol. 2, e118 (2006).

    Article  ADS  Google Scholar 

  66. Iossifov, I., Zheng, T., Baron, M., Gilliam, T. C. & Rzhetsky, A. Genetic-linkage mapping of complex hereditary disorders to a whole-genome molecular-interaction network. Genome Res. 18, 1150–1162 (2008).

    Article  CAS  Google Scholar 

  67. Rzhetsky, A., Wajngurt, D., Park, N. & Zheng, T. Probing genetic overlap among complex human phenotypes. Proc. Natl Acad. Sci. USA 104, 11694–11699 (2007). This paper demonstrates that with enough phenotypic information it is possible to build modelling networks that predict the underlying genetic overlap among neuropsychiatric diseases with previously distinct aetiologies.

    Article  ADS  CAS  Google Scholar 

  68. Bullmore, E. & Sporns, O. Complex brain networks: graph theoretical analysis of structural and functional systems. Nature Rev. Neurosci. 10, 186–198 (2009).

    Article  CAS  Google Scholar 

  69. Honey, C. J., Kotter, R., Breakspear, M. & Sporns, O. Network structure of cerebral cortex shapes functional connectivity on multiple time scales. Proc. Natl Acad. Sci. USA 104, 10240–10245 (2007).

    Article  ADS  CAS  Google Scholar 

  70. Rilling, J. K. et al. The evolution of the arcuate fasciculus revealed with comparative DTI. Nature Neurosci. 11, 426–428 (2008).

    Article  CAS  Google Scholar 

  71. Mischel, P. S., Cloughesy, T. F. & Nelson, S. F. DNA-microarray analysis of brain cancer: molecular classification for therapy. Nature Rev. Neurosci. 5, 782–792 (2004).

    Article  CAS  Google Scholar 

  72. Tang, Y., Lu, A., Aronow, B. J. & Sharp, F. R. Blood genomic responses differ after stroke, seizures, hypoglycemia, and hypoxia: blood genomic fingerprints of disease. Ann. Neurol. 50, 699–707 (2001).

    Article  CAS  Google Scholar 

  73. Thomas, E. A. et al. The HDAC inhibitor 4b ameliorates the disease phenotype and transcriptional abnormalities in Huntington's disease transgenic mice. Proc. Natl Acad. Sci. USA 105, 15564–15569 (2008).

    Article  ADS  CAS  Google Scholar 

  74. Day, A., Carlson, M. R., Dong, J., O'Connor, B. D. & Nelson, S. F. Celsius: a community resource for Affymetrix microarray data. Genome Biol. 8, R112 (2007).

  75. McDowall, M. D., Scott, M. S. & Barton, G. J. PIPs: human protein–protein interaction prediction database. Nucleic Acids Res. 37, D651–D656 (2009).

    Article  CAS  Google Scholar 

  76. Kamburov, A., Wierling, C., Lehrach, H. & Herwig, R. ConsensusPathDB — a database for integrating human functional interaction networks. Nucleic Acids Res. 37, D623–D628 (2009).

    Article  CAS  Google Scholar 

  77. Chatr-Aryamontri, A., Zanzoni, A., Ceol, A. & Cesareni, G. Searching the protein interaction space through the MINT database. Methods Mol. Biol. 484, 305–317 (2008).

    Article  CAS  Google Scholar 

  78. Mathivanan, S. et al. An evaluation of human protein-protein interaction data in the public domain. BMC Bioinformatics 7 (suppl. 5), S19 (2006).

    Article  Google Scholar 

  79. Foster, L. J. et al. A mammalian organelle map by protein correlation profiling. Cell 125, 187–199 (2006).

    Article  CAS  Google Scholar 

  80. Mathivanan, S. et al. Human Proteinpedia enables sharing of human protein data. Nature Biotechnol. 26, 164–167 (2008).

    Article  CAS  Google Scholar 

  81. Linsen, S. E. et al. Limitations and possibilities of small RNA digital gene expression profiling. Nature Methods 6, 474–476 (2009).

    Article  CAS  Google Scholar 

  82. Passalacqua, K. D. et al. Structure and complexity of a bacterial transcriptome. J. Bacteriol. 191, 3203–3211 (2009).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This Review would not have been possible without help from members of the Geschwind laboratory, especially G. Coppola, who helped with several figures and provided critical comments on the manuscript; M. Oldham, for his pioneering use of WGCNA in the brain; and D. Crandall of the Mental Retardation Research Centre media core at the University of California, Los Angeles, for assistance with Fig. 3. We are also grateful to our collaborators S. Horvath, S. Nelson and P. Mischel, for their generosity of time and expertise. We apologize to the authors of the many outstanding studies we were not able to cite owing to space limitations. We acknowledge support from the US National Institutes of Health (grants NIMH R37 MH60233-06A1 and NINDS U24 NS52108), the US National Institute on Aging, and the Dr Miriam & Sheldon G. Adelson Medical Research Foundation programme on neural repair and rehabilitation for our work in functional genomics (D.H.G.); and the A. P. Giannini Foundation Medical Research Foundation and NARSAD (G.K.).

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

Competing interests: D.H.G. is on the Scientific Advisory Board of the Human Brain Atlas project of the Allen Institute for Brain Science, which is a non-profit organization.

Additional information

Reprints and permissions information is available at http://www.nature.com/reprints.

Correspondence should be addressed to D.H.G. (dhg@ucla.edu).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Geschwind, D., Konopka, G. Neuroscience in the era of functional genomics and systems biology. Nature 461, 908–915 (2009). https://doi.org/10.1038/nature08537

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature08537

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing