Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The Ink4/Arf locus is a barrier for iPS cell reprogramming

Abstract

The mechanisms involved in the reprogramming of differentiated cells into induced pluripotent stem (iPS) cells by the three transcription factors Oct4 (also known as Pou5f1), Klf4 and Sox2 remain poorly understood1. The Ink4/Arf locus comprises the Cdkn2aCdkn2b genes encoding three potent tumour suppressors, namely p16Ink4a, p19Arf and p15Ink4b, which are basally expressed in differentiated cells and upregulated by aberrant mitogenic signals2,3,4. Here we show that the locus is completely silenced in iPS cells, as well as in embryonic stem (ES) cells, acquiring the epigenetic marks of a bivalent chromatin domain, and retaining the ability to be reactivated after differentiation. Cell culture conditions during reprogramming enhance the expression of the Ink4/Arf locus, further highlighting the importance of silencing the locus to allow proliferation and reprogramming. Indeed, the three factors together repress the Ink4/Arf locus soon after their expression and concomitant with the appearance of the first molecular markers of ‘stemness’. This downregulation also occurs in cells carrying the oncoprotein large-T, which functionally inactivates the pathways regulated by the Ink4/Arf locus, thus indicating that the silencing of the locus is intrinsic to reprogramming and not the result of a selective process. Genetic inhibition of the Ink4/Arf locus has a profound positive effect on the efficiency of iPS cell generation, increasing both the kinetics of reprogramming and the number of emerging iPS cell colonies. In murine cells, Arf, rather than Ink4a, is the main barrier to reprogramming by activation of p53 (encoded by Trp53) and p21 (encoded by Cdkn1a); whereas, in human fibroblasts, INK4a is more important than ARF. Furthermore, organismal ageing upregulates the Ink4/Arf locus2,5 and, accordingly, reprogramming is less efficient in cells from old organisms, but this defect can be rescued by inhibiting the locus with a short hairpin RNA. All together, we conclude that the silencing of Ink4/Arf locus is rate-limiting for reprogramming, and its transient inhibition may significantly improve the generation of iPS cells.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Functional reprogramming of the Ink4/Arf locus.
Figure 2: Silencing of the Ink4/Arf locus during reprogramming.
Figure 3: Effect of Ink4a/Arf on reprogramming efficiency.
Figure 4: Association between age of the parental cells, expression of the Ink4/Arf locus and reprogramming efficiency.

Similar content being viewed by others

References

  1. Takahashi, K. & Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126, 663–676 (2006)

    Article  CAS  Google Scholar 

  2. Collado, M., Blasco, M. A. & Serrano, M. Cellular senescence in cancer and aging. Cell 130, 223–233 (2007)

    Article  CAS  Google Scholar 

  3. Serrano, M., Lin, A. W., McCurrach, M. E., Beach, D. & Lowe, S. W. Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell 88, 593–602 (1997)

    Article  CAS  Google Scholar 

  4. Sharpless, N. E. INK4a/ARF: a multifunctional tumor suppressor locus. Mutat. Res. 576, 22–38 (2005)

    Article  CAS  Google Scholar 

  5. Krishnamurthy, J. et al. Ink4a/Arf expression is a biomarker of aging. J. Clin. Invest. 114, 1299–1307 (2004)

    Article  CAS  Google Scholar 

  6. Bernstein, B. E. et al. A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell 125, 315–326 (2006)

    Article  CAS  Google Scholar 

  7. Azuara, V. et al. Chromatin signatures of pluripotent cell lines. Nature Cell Biol. 8, 532–538 (2006)

    Article  CAS  Google Scholar 

  8. Mikkelsen, T. S. et al. Genome-wide maps of chromatin state in pluripotent and lineage-committed cells. Nature 448, 553–560 (2007)

    Article  ADS  CAS  Google Scholar 

  9. Ohm, J. E. et al. A stem cell-like chromatin pattern may predispose tumor suppressor genes to DNA hypermethylation and heritable silencing. Nature Genet. 39, 237–242 (2007)

    Article  CAS  Google Scholar 

  10. Savatier, P., Lapillonne, H., van Grunsven, L. A., Rudkin, B. B. & Samarut, J. Withdrawal of differentiation inhibitory activity/leukemia inhibitory factor up-regulates D-type cyclins and cyclin-dependent kinase inhibitors in mouse embryonic stem cells. Oncogene 12, 309–322 (1996)

    CAS  PubMed  Google Scholar 

  11. Sharpless, N. E. Ink4a/Arf links senescence and aging. Exp. Gerontol. 39, 1751–1759 (2004)

    Article  CAS  Google Scholar 

  12. Hara, E. et al. Regulation of p16 CDKN2 expression and its implications for cell immortalization and senescence. Mol. Cell. Biol. 16, 859–867 (1996)

    Article  CAS  Google Scholar 

  13. Sherr, C. J. Divorcing ARF and p53: an unsettled case. Nature Rev. Cancer 6, 663–673 (2006)

    Article  CAS  Google Scholar 

  14. Zhao, Y. et al. Two supporting factors greatly improve the efficiency of human iPSC generation. Cell Stem Cell 3, 475–479 (2008)

    Article  CAS  Google Scholar 

  15. Sherr, C. J. & Roberts, J. M. CDK inhibitors: positive and negative regulators of G1-phase progression. Genes Dev. 13, 1501–1512 (1999)

    Article  CAS  Google Scholar 

  16. Cherry, S. R., Biniszkiewicz, D., van Parijs, L., Baltimore, D. & Jaenisch, R. Retroviral expression in embryonic stem cells and hematopoietic stem cells. Mol. Cell. Biol. 20, 7419–7426 (2000)

    Article  CAS  Google Scholar 

  17. Brambrink, T. et al. Sequential expression of pluripotency markers during direct reprogramming of mouse somatic cells. Cell Stem Cell 2, 151–159 (2008)

    Article  CAS  Google Scholar 

  18. Stadtfeld, M., Maherali, N., Breault, D. T. & Hochedlinger, K. Defining molecular cornerstones during fibroblast to iPS cell reprogramming in mouse. Cell Stem Cell 2, 230–240 (2008)

    Article  CAS  Google Scholar 

  19. Wei, W., Hemmer, R. M. & Sedivy, J. M. Role of p14ARF in replicative and induced senescence of human fibroblasts. Mol. Cell. Biol. 21, 6748–6757 (2001)

    Article  CAS  Google Scholar 

  20. Evan, G. I. & d’Adda di Fagagna, F. Cellular senescence: hot or what? Curr. Opin. Genet. Dev. 19, 25–31 (2009)

    Article  CAS  Google Scholar 

  21. Wong, D. J. et al. Module map of stem cell genes guides creation of epithelial cancer stem cells. Cell Stem Cell 2, 333–344 (2008)

    Article  CAS  Google Scholar 

  22. Ben-Porath, I. et al. An embryonic stem cell-like gene expression signature in poorly differentiated aggressive human tumors. Nature Genet. 40, 499–507 (2008)

    Article  CAS  Google Scholar 

  23. Blelloch, R., Venere, M., Yen, J. & Ramalho-Santos, M. Generation of induced pluripotent stem cells in the absence of drug selection. Cell Stem Cell 1, 245–247 (2007)

    Article  CAS  Google Scholar 

  24. Takahashi, K. et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131, 861–872 (2007)

    Article  CAS  Google Scholar 

  25. Park, I. H. et al. Reprogramming of human somatic cells to pluripotency with defined factors. Nature 451, 141–146 (2008)

    Article  ADS  CAS  Google Scholar 

  26. Palmero, I. & Serrano, M. Induction of senescence by oncogenic Ras. Methods Enzymol. 333, 247–256 (2001)

    Article  CAS  Google Scholar 

  27. Munoz, P., Blanco, R., Flores, J. M. & Blasco, M. A. XPF nuclease-dependent telomere loss and increased DNA damage in mice overexpressing TRF2 result in premature aging and cancer. Nature Genet. 37, 1063–1071 (2005)

    Article  CAS  Google Scholar 

  28. Li, H., Vogel, H., Holcomb, V. B., Gu, Y. & Hasty, P. Deletion of Ku70, Ku80, or both causes early aging without substantially increased cancer. Mol. Cell. Biol. 27, 8205–8214 (2007)

    Article  CAS  Google Scholar 

  29. Dickins, R. A. et al. Probing tumor phenotypes using stable and regulated synthetic microRNA precursors. Nature Genet. 37, 1289–1295 (2005)

    Article  CAS  Google Scholar 

  30. Voorhoeve, P. M. & Agami, R. The tumor-suppressive functions of the human INK4A locus. Cancer Cell 4, 311–319 (2003)

    Article  CAS  Google Scholar 

  31. Yuan, J. S., Reed, A., Chen, F. & Stewart, C. N. Statistical analysis of real-time PCR data. BMC Bioinformatics 7, 85 (2006)

    Article  Google Scholar 

Download references

Acknowledgements

We thank S. Lowe and R. Agami for reagents. We are grateful to M. Muñoz, O. Dominguez, D. Megias and H. Schonthaler. H.L. is the recipient of a ‘Juan de la Cierva’ contract from the Spanish Ministry of Science (MICINN). M.Co. is the recipient of a ‘Ramon y Cajal’ contract (MICINN). Work in the laboratory of M.S. is funded by the CNIO and by grants from the MICINN (SAF and CONSOLIDER), the Regional Government of Madrid, the European Union, the European Research Council (ERC), and the ‘Marcelino Botin’ Foundation.

Author Contributions H.L. performed most of the experimental work. M.Co. and A.V. made critical experimental contributions. K.S., S.O. and M.Ca. contributed experimentally. H.L., M.Co., M.A.B. and M.S. designed the experimental plan, analysed and interpreted the data. M.S. directed the project and wrote the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel Serrano.

Supplementary information

Supplementary Information

This file contains Supplementary Table S1 and Supplementary Figures S1-S15 with Legends. (PDF 1879 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, H., Collado, M., Villasante, A. et al. The Ink4/Arf locus is a barrier for iPS cell reprogramming. Nature 460, 1136–1139 (2009). https://doi.org/10.1038/nature08290

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature08290

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing