Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Crystal structure of the ATP-gated P2X4 ion channel in the closed state

Abstract

P2X receptors are cation-selective ion channels gated by extracellular ATP, and are implicated in diverse physiological processes, from synaptic transmission to inflammation to the sensing of taste and pain. Because P2X receptors are not related to other ion channel proteins of known structure, there is at present no molecular foundation for mechanisms of ligand-gating, allosteric modulation and ion permeation. Here we present crystal structures of the zebrafish P2X4 receptor in its closed, resting state. The chalice-shaped, trimeric receptor is knit together by subunit–subunit contacts implicated in ion channel gating and receptor assembly. Extracellular domains, rich in β-strands, have large acidic patches that may attract cations, through fenestrations, to vestibules near the ion channel. In the transmembrane pore, the ‘gate’ is defined by an 8 Å slab of protein. We define the location of three non-canonical, intersubunit ATP-binding sites, and suggest that ATP binding promotes subunit rearrangement and ion channel opening.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A functional P2X 4 receptor for structural studies.
Figure 2: The architecture of P2X receptors.
Figure 3: Subunit fold and intersubunit contacts.
Figure 4: Closed, resting conformation.
Figure 5: Gadolinium (Gd 3+ )-binding sites.
Figure 6: ATP-binding site.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

References

  1. Holton, F. A. & Holton, P. The capillary dilator substances in dry powders of spinal roots; a possible role of adenosine triphosphate in chemical transmission from nerve endings. J. Physiol. (Lond.) 126, 124–140 (1954)

    Article  CAS  Google Scholar 

  2. Burnstock, G. Purinergic nerves. Pharmacol. Rev. 24, 509–581 (1972)

    CAS  Google Scholar 

  3. Valera, S. et al. A new class of ligand-gated ion channel defined by P2x receptor for extracellular ATP. Nature 371, 516–519 (1994)

    Article  CAS  ADS  Google Scholar 

  4. Lustig, K. D., Shiau, A. K., Brake, A. J. & Julius, D. Expression cloning of an ATP receptor from mouse neuroblastoma cells. Proc. Natl Acad. Sci. USA 90, 5113–5117 (1993)

    Article  CAS  ADS  Google Scholar 

  5. Webb, T. E. et al. Cloning and functional expression of a brain G-protein-coupled ATP receptor. FEBS Lett. 324, 219–225 (1993)

    Article  CAS  Google Scholar 

  6. Brake, A. J., Wagenbach, M. J. & Julius, D. New structural motif for ligand-gated ion channels defined by an ionotropic ATP receptor. Nature 371, 519–523 (1994)

    Article  CAS  ADS  Google Scholar 

  7. Schwiebert, E. M. & Zsembery, A. Extracellular ATP as a signaling molecule for epithelial cells. Biochim. Biophys. Acta 1615, 7–32 (2003)

    Article  CAS  Google Scholar 

  8. Surprenant, A. & North, R. A. Signaling at purinergic P2X receptors. Annu. Rev. Physiol. 71, 333–359 (2008)

    Article  Google Scholar 

  9. Khakh, B. S. & Henderson, G. ATP receptor-mediated enhancement of fast excitatory neurotransmitter release in the brain. Mol. Pharmacol. 54, 372–378 (1998)

    Article  CAS  Google Scholar 

  10. Gu, J. G. & MacDermott, A. B. Activation of ATP P2X receptors elicits glutamate release from sensory neuron synapses. Nature 389, 749–753 (1997)

    Article  CAS  ADS  Google Scholar 

  11. Hugel, S. & Schlichter, R. Presynaptic P2X receptors facilitate inhibitory GABAergic transmission between cultured rat spinal cord dorsal horn neurons. J. Neurosci. 20, 2121–2130 (2000)

    Article  CAS  Google Scholar 

  12. Donato, R. et al. GABA release by basket cells onto Purkinje cells, in rat cerebellar slices, is directly controlled by presynaptic purinergic receptors, modulating Ca2+ influx. Cell Calcium 44, 521–532 (2008)

    Article  CAS  Google Scholar 

  13. Edwards, F. A., Gibb, A. J. & Colquhoun, D. ATP receptor-mediated synaptic currents in the central nervous system. Nature 359, 144–147 (1992)

    Article  CAS  ADS  Google Scholar 

  14. Sim, J. A. et al. Altered hippocampal synaptic potentiation in P2X4 knock-out mice. J. Neurosci. 26, 9006–9009 (2006)

    Article  CAS  Google Scholar 

  15. Finger, T. E. et al. ATP signaling is crucial for communication from taste buds to gustatory nerves. Science 310, 1495–1499 (2005)

    Article  CAS  ADS  Google Scholar 

  16. Cook, S. P., Vulchanova, L., Hargreaves, K. M., Elde, R. & McCleskey, E. W. Distinct ATP receptors on pain-sensing and stretch-sensing neurons. Nature 387, 505–508 (1997)

    Article  CAS  ADS  Google Scholar 

  17. Souslova, V. et al. Warm-coding deficits and aberrant inflammatory pain in mice lacking P2X3 receptors. Nature 407, 1015–1017 (2000)

    Article  CAS  ADS  Google Scholar 

  18. Cockayne, D. A. et al. Urinary bladder hyporeflexia and reduced pain-related behaviour in P2X3-deficient mice. Nature 407, 1011–1015 (2000)

    Article  CAS  ADS  Google Scholar 

  19. Chessell, I. P. et al. Disruption of the P2X7 purinoceptor gene abolishes chronic inflammatory and neuropathic pain. Pain 114, 386–396 (2005)

    Article  CAS  Google Scholar 

  20. Yamamoto, K. et al. Impaired flow-dependent control of vascular tone and remodeling in P2X4-deficient mice. Nature Med. 12, 133–137 (2006)

    Article  CAS  Google Scholar 

  21. Inscho, E. W., Cook, A. K., Imig, J. D., Vial, C. & Evans, R. J. Renal autoregulation in P2X1 knockout mice. Acta Physiol. Scand. 181, 445–453 (2004)

    Article  CAS  Google Scholar 

  22. Solle, M. et al. Altered cytokine production in mice lacking P2X7 receptors. J. Biol. Chem. 276, 125–132 (2001)

    Article  CAS  Google Scholar 

  23. White, N. & Burnstock, G. P2 receptors and cancer. Trends Pharmacol. Sci. 27, 211–217 (2006)

    Article  CAS  Google Scholar 

  24. Di Virgilio, F. Liaisons dangereuses: P2X7 and the inflammasome. Trends Pharmacol. Sci. 28, 465–472 (2007)

    Article  CAS  Google Scholar 

  25. North, R. A. Molecular physiology of P2X receptors. Physiol. Rev. 82, 1013–1067 (2002)

    Article  CAS  Google Scholar 

  26. Aschrafi, A., Sadtler, S., Niculescu, C., Rettinger, J. & Schmalzing, G. Trimeric architecture of homomeric P2X2 and heteromeric P2X1+2 receptor subtypes. J. Mol. Biol. 342, 333–343 (2004)

    Article  CAS  Google Scholar 

  27. Barrera, N. P., Ormond, S. J., Henderson, R. M., Murrell-Lagnado, R. D. & Edwardson, J. M. Atomic force microscopy imaging demonstrates that P2X2 receptors are trimers but that P2X6 receptor subunits do not oligomerize. J. Biol. Chem. 280, 10759–10765 (2005)

    Article  CAS  Google Scholar 

  28. Nicke, A. et al. P2X1 and P2X3 receptors form stable trimers: a novel structural motif of ligand-gated ion channels. EMBO J. 17, 3016–3028 (1998)

    Article  CAS  Google Scholar 

  29. Nicke, A., Rettinger, J. & Schmalzing, G. Monomeric and dimeric byproducts are the principal functional elements of higher order P2X1 concatamers. Mol. Pharmacol. 63, 243–252 (2003)

    Article  CAS  Google Scholar 

  30. North, R. A. & Surprenant, A. Pharmacology of cloned P2X receptors. Annu. Rev. Pharmacol. Toxicol. 40, 563–580 (2000)

    Article  CAS  Google Scholar 

  31. Kellenberger, S. & Schild, L. Epithelial sodium channel/degenerin family of ion channels: a variety of functions for a shared structure. Physiol. Rev. 82, 735–767 (2002)

    Article  CAS  Google Scholar 

  32. Kawate, T. & Gouaux, E. Fluorescence-detection size-exclusion chromatography for precrystallization screening of integral membrane proteins. Structure 14, 673–681 (2006)

    Article  CAS  Google Scholar 

  33. Diaz-Hernandez, M. et al. Cloning and characterization of two novel zebrafish P2X receptor subunits. Biochem. Biophys. Res. Commun. 295, 849–853 (2002)

    Article  CAS  Google Scholar 

  34. Blake, C. C., Geisow, M. J., Oatley, S. J., Rerat, B. & Rerat, C. Structure of prealbumin: secondary, tertiary and quaternary interactions determined by Fourier refinement at 1.8 Å. J. Mol. Biol. 121, 339–356 (1978)

    Article  CAS  Google Scholar 

  35. Williams, D. C., Lee, J. Y., Cai, M., Bewley, C. A. & Clore, G. M. Crystal structures of the HIV-1 inhibitory cyanobacterial protein MVL free and bound to Man3GlcNAc2: structural basis for specificity and high-affinity binding to the core pentasaccharide from n-linked oligomannoside. J. Biol. Chem. 280, 29269–29276 (2005)

    Article  CAS  Google Scholar 

  36. Ennion, S. J. & Evans, R. J. Conserved cysteine residues in the extracellular loop of the human P2X1 receptor form disulfide bonds and are involved in receptor trafficking to the cell surface. Mol. Pharmacol. 61, 303–311 (2002)

    Article  CAS  Google Scholar 

  37. Clyne, J. D., Wang, L. F. & Hume, R. I. Mutational analysis of the conserved cysteines of the rat P2X2 purinoceptor. J. Neurosci. 22, 3873–3880 (2002)

    Article  CAS  Google Scholar 

  38. Fabbretti, E. et al. Identification of negative residues in the P2X3 ATP receptor ectodomain as structural determinants for desensitization and the Ca2+-sensing modulatory sites. J. Biol. Chem. 279, 53109–53115 (2004)

    Article  CAS  Google Scholar 

  39. Duckwitz, W., Hausmann, R., Aschrafi, A. & Schmalzing, G. P2X5 subunit assembly requires scaffolding by the second transmembrane domain and a conserved aspartate. J. Biol. Chem. 281, 39561–39572 (2006)

    Article  CAS  Google Scholar 

  40. Li, M., Chang, T. H., Silberberg, S. D. & Swartz, K. J. Gating the pore of P2X receptor channels. Nature Neurosci. 11, 883–887 (2008)

    Article  CAS  Google Scholar 

  41. Gonzales, E. B., Kawate, T. & Gouaux, E. Pore architecture and ion sites in acid-sensing ion channels and P2X receptors. Nature 10.1038/nature08218 (this issue)

  42. Ennion, S., Hagan, S. & Evans, R. J. The role of positively charged amino acids in ATP recognition by human P2X1 receptors. J. Biol. Chem. 275, 29361–29367 (2000)

    Article  CAS  Google Scholar 

  43. Roberts, J. A. & Evans, R. J. ATP binding at human P2X1 receptors. Contribution of aromatic and basic amino acids revealed using mutagenesis and partial agonists. J. Biol. Chem. 279, 9043–9055 (2004)

    Article  CAS  Google Scholar 

  44. Jiang, L. H., Rassendren, F., Surprenant, A. & North, R. A. Identification of amino acid residues contributing to the ATP-binding site of a purinergic P2X receptor. J. Biol. Chem. 275, 34190–34196 (2000)

    Article  CAS  Google Scholar 

  45. Roberts, J. A. & Evans, R. J. Contribution of conserved polar glutamine, asparagine and threonine residues and glycosylation to agonist action at human P2X1 receptors for ATP. J. Neurochem. 96, 843–852 (2006)

    Article  CAS  Google Scholar 

  46. Marquez-Klaka, B., Rettinger, J., Bhargava, Y., Eisele, T. & Nicke, A. Identification of an intersubunit cross-link between substituted cysteine residues located in the putative ATP binding site of the P2X1 receptor. J. Neurosci. 27, 1456–1466 (2007)

    Article  CAS  Google Scholar 

  47. Michel, A. D. et al. Identification of regions of the P2X7 receptor that contribute to human and rat species differences in antagonist effects. Br. J. Pharmacol. 155, 738–751 (2008)

    Article  CAS  Google Scholar 

  48. Sim, J. A., Broomhead, H. E. & North, R. A. Ectodomain lysines and suramin block of P2X1 receptors. J. Biol. Chem. 283, 29841–29846 (2008)

    Article  CAS  Google Scholar 

  49. Smart, O. S., Goodfellow, J. M. & Wallace, B. A. The pore dimensions of gramicidin A. Biophys. J. 65, 2455–2460 (1993)

    Article  CAS  Google Scholar 

  50. Baker, N. A., Sept, D., Joseph, S., Holst, M. J. & McCammon, J. A. Electrostatics of nanosystems: application to microtubules and the ribosome. Proc. Natl Acad. Sci. USA 98, 10037–10041 (2001)

    Article  CAS  ADS  Google Scholar 

  51. Diaz-Hernandez, M. et al. Cloning and characterization of two novel zebrafish P2X receptor subunits. Biochem. Biophys. Res. Commun. 295, 849–853 (2002)

    Article  CAS  Google Scholar 

  52. Kucenas, S. et al. Molecular characterization of the zebrafish P2X receptor subunit gene family. Neuroscience 121, 935–945 (2003)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the personnel at beamlines 5.0.2, 8.2.1 and 8.2.2 of the Advanced Light Source and at beamline 24-ID-E of the Advanced Photon Source. We also thank M. Voigt for zebrafish P2X receptor DNA, T. Homrichhausen for help with cloning and FSEC screening, J. Berriman for help with electron microscopy, L. Vaskalis for assistance with illustrations, and Gouaux laboratory members for discussions. This work was supported by the National Institutes of Health (NIH) and the American Asthma Foundation. E.G. is an investigator with the Howard Hughes Medical Institute.

Author Contributions E.G. and T.K. designed the project. T.K. performed cloning, cell culture, FSEC screening, purification, characterization, electron microscopy and crystallography. J.C.M. performed cloning, cell culture, FSEC screening, purification and crystallization. W.T.B. carried out the electrophysiology. All authors contributed to writing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric Gouaux.

Additional information

Atomic coordinates and structure factors have been deposited with the Protein Data Bank under codes 3I5D and 3H9V for the ΔP2X4-A and ΔP2X4-B constructs, respectively.

Supplementary information

Supplementary Information

This file contains Supplementary Tables 1-2 and Supplementary Figures 1-13 with Legends. (PDF 1847 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kawate, T., Michel, J., Birdsong, W. et al. Crystal structure of the ATP-gated P2X4 ion channel in the closed state. Nature 460, 592–598 (2009). https://doi.org/10.1038/nature08198

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature08198

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing