Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The microbial ocean from genomes to biomes

Abstract

Numerically, microbial species dominate the oceans, yet their population dynamics, metabolic complexity and synergistic interactions remain largely uncharted. A full understanding of life in the ocean requires more than knowledge of marine microbial taxa and their genome sequences. The latest experimental techniques and analytical approaches can provide a fresh perspective on the biological interactions within marine ecosystems, aiding in the construction of predictive models that can interrelate microbial dynamics with the biogeochemical matter and energy fluxes that make up the ocean ecosystem.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The intersection of traditional disciplines and metagenomics.
Figure 2: Transcriptome sequencing protocol for marine microbial assemblages.
Figure 3: Quantifying microbial responses to environmental variability using environmental transcriptomics.
Figure 4: The network instructions encoded in microbial genomes drive ecosystem processes.

Similar content being viewed by others

References

  1. Pace, N. R. A molecular view of microbial diversity and the biosphere. Science 276, 734–740 (1997).

    Article  CAS  Google Scholar 

  2. Staley, J. T. & Konopka, A. Measurement of in situ activities of nonphotosynthetic microorganisms in aquatic and terrestrial habitats. Annu. Rev. Microbiol. 39, 321–346 (1985).

    Article  CAS  Google Scholar 

  3. Rappe, M. S. & Giovannoni, S. J. The uncultured microbial majority. Annu. Rev. Microbiol. 57, 369–394 (2003).

    Article  CAS  Google Scholar 

  4. Giovannoni, S. & Stingl, U. The importance of culturing bacterioplankton in the 'omics' age. Nature Rev. Microbiol. 5, 820–826 (2007).

    Article  CAS  Google Scholar 

  5. Stingl, U., Tripp, H. J. & Giovannoni, S. J. Improvements of high-throughput culturing yielded novel SAR11 strains and other abundant marine bacteria from the Oregon coast and the Bermuda Atlantic Time Series study site. ISME J. 1, 361–371 (2007).

    Article  CAS  Google Scholar 

  6. Connon, S. A. & Giovannoni, S. J. High-throughput methods for culturing microorganisms in very-low-nutrient media yield diverse new marine isolates. Appl. Environ. Microbiol. 68, 3878–3885 (2002). This is the first report of a dilution-to-extinction cultivation approach that was successful in isolating a wide variety of the predominant marine bacterioplankton types.

    Article  CAS  Google Scholar 

  7. Chisholm, S. W. et al. A novel free-living prochlorophyte occurs at high cell concentrations in the oceanic euphotic zone. Nature 334, 340–343 (1988).

    Article  ADS  Google Scholar 

  8. Chisholm, S. W. et al. Prochlorococcus marinus nov. gen. nov. sp.: an oxyphototrophic marine prokaryote containing divinyl chlorophyll a and b . Arch. Microbiol. 157, 297–300 (1992).

    Article  CAS  Google Scholar 

  9. Sullivan, M. B., Waterbury, J. B. & Chisholm, S. W. Cyanophages infecting the oceanic cyanobacterium Prochlorococcus . Nature 424, 1047–1051 (2003).

    Article  ADS  CAS  Google Scholar 

  10. Lindell, D. et al. Genome-wide expression dynamics of a marine virus and host reveal features of co-evolution. Nature 449, 83–86 (2007).

    Article  ADS  CAS  Google Scholar 

  11. Follows, M. J., Dutkiewicz, S., Grant, S. & Chisholm, S. W. Emergent biogeography of microbial communities in a model ocean. Science 315, 1843–1846 (2007).

    Article  ADS  CAS  Google Scholar 

  12. Rappe, M. S., Connon, S. A., Vergin, K. L. & Giovannoni, S. J. Cultivation of the ubiquitous SAR11 marine bacterioplankton clade. Nature 418, 630–633 (2002). This paper reports the first isolation in pure culture of a strain from the SAR11 clade, a representative of one of the most abundant bacterial groups in marine plankton.

    Article  ADS  CAS  Google Scholar 

  13. Giovannoni, S. J. et al. Proteorhodopsin in the ubiquitous marine bacterium SAR11. Nature 438, 82–85 (2005).

    Article  ADS  CAS  Google Scholar 

  14. Giovannoni, S. J. et al. Genome streamlining in a cosmopolitan oceanic bacterium. Science 309, 1242–1245 (2005).

    Article  ADS  CAS  Google Scholar 

  15. Tripp, H. J. et al. SAR11 marine bacteria require exogenous reduced sulphur for growth. Nature 452, 741–744 (2008).

    Article  ADS  CAS  Google Scholar 

  16. Tripp, H. J. et al. Unique glycine-activated riboswitch linked to glycine–serine auxotrophy in SAR11. Environ. Microbiol. 11, 230–238 (2009).

    Article  CAS  Google Scholar 

  17. Tyson, G. W. et al. Community structure and metabolism through reconstruction of microbial genomes from the environment. Nature 428, 37–43 (2004).

    Article  ADS  CAS  Google Scholar 

  18. Hallam, S. J. et al. Genomic analysis of the uncultivated marine crenarchaeote Cenarchaeum symbiosum . Proc. Natl Acad. Sci. USA 103, 18296–18301 (2006).

    Article  ADS  CAS  Google Scholar 

  19. Allen, E. E. et al. Genome dynamics in a natural archaeal population. Proc. Natl Acad. Sci. USA 104, 1883–1888 (2007).

    Article  ADS  CAS  Google Scholar 

  20. Venter, J. C. et al. Environmental genome shotgun sequencing of the Sargasso Sea. Science 304, 66–74 (2004).

    Article  ADS  CAS  Google Scholar 

  21. Rusch, D. B. et al. The Sorcerer II Global Ocean Sampling expedition: northwest Atlantic through eastern tropical Pacific. PLoS Biol. 5, e77 (2007).

    Article  Google Scholar 

  22. Yooseph, S. et al. The Sorcerer II Global Ocean Sampling expedition: expanding the universe of protein families. PLoS Biol. 5, e16 (2007). This was the first attempt to identify protein-family clusters globally, based on public data combined with some 6 million newly predicted peptides from a metagenomic sampling of surface-water marine bacterioplankton.

    Article  Google Scholar 

  23. Tyson, G. W. et al. Genome-directed isolation of the key nitrogen fixer Leptospirillum ferrodiazotrophum sp. nov. from an acidophilic microbial community. Appl. Environ. Microbiol. 71, 6319–6324 (2005).

    Article  CAS  Google Scholar 

  24. DeLong, E. F. et al. Community genomics among stratified microbial assemblages in the ocean's interior. Science 311, 496–503 (2006).

    Article  ADS  CAS  Google Scholar 

  25. Dinsdale, E. A. et al. Functional metagenomic profiling of nine biomes. Nature 452, 629–632 (2008).

    Article  ADS  CAS  Google Scholar 

  26. Zehr, J. P. et al. Globally distributed uncultivated oceanic N2-fixing cyanobacteria lack oxygenic photosystem II. Science 322, 1110–1112 (2008).

    Article  ADS  CAS  Google Scholar 

  27. Béjà, O. et al. Bacterial rhodopsin: evidence for a new type of phototrophy in the sea. Science 289, 1902–1906 (2000). This paper reports the first observation and characterization of ion-pumping rhodopsins in the domain Bacteria, a discovery enabled by metagenomic sampling and analyses.

    Article  ADS  Google Scholar 

  28. Béjà, O., Spudich, E. N., Spudich, J. L., Leclerc, M. & DeLong, E. F. Proteorhodopsin phototrophy in the ocean. Nature 411, 786–789 (2001).

    Article  ADS  Google Scholar 

  29. Sabehi, G. et al. Novel proteorhodopsin variants from the Mediterranean and Red Seas. Environ. Microbiol. 5, 842–849 (2003).

    Article  CAS  Google Scholar 

  30. de la Torre, J. R. et al. Proteorhodopsin genes are distributed among divergent marine bacterial taxa. Proc. Natl Acad. Sci. USA 100, 12830–12835 (2003).

    Article  ADS  CAS  Google Scholar 

  31. Sabehi, G., Beja, O., Suzuki, M. T., Preston, C. M. & DeLong, E. F. Different SAR86 subgroups harbour divergent proteorhodopsins. Environ. Microbiol. 6, 903–910 (2004).

    Article  Google Scholar 

  32. Sabehi, G. et al. New insights into metabolic properties of marine bacteria encoding proteorhodopsins. PLoS Biol. 3, e273 (2005).

    Article  Google Scholar 

  33. Frigaard, N. U., Martinez, A., Mincer, T. J. & DeLong, E. F. Proteorhodopsin lateral gene transfer between marine planktonic Bacteria and Archaea. Nature 439, 847–850 (2006).

    Article  ADS  CAS  Google Scholar 

  34. McCarren, J. & DeLong, E. F. Proteorhodopsin photosystem gene clusters exhibit co-evolutionary trends and shared ancestry among diverse marine microbial phyla. Environ. Microbiol. 9, 846–858 (2007).

    Article  CAS  Google Scholar 

  35. Martinez, A., Bradley, A. S., Waldbauer, J. R., Summons, R. E. & DeLong, E. F. Proteorhodopsin photosystem gene expression enables photophosphorylation in a heterologous host. Proc. Natl Acad. Sci. USA 104, 5590–5595 (2007).

    Article  ADS  CAS  Google Scholar 

  36. Gomez-Consarnau, L. et al. Light stimulates growth of proteorhodopsin-containing marine Flavobacteria. Nature 445, 210–213 (2007).

    Article  ADS  CAS  Google Scholar 

  37. Stingl, U., Desiderio, R. A., Cho, J. C., Vergin, K. L. & Giovannoni, S. J. The SAR92 clade: an abundant coastal clade of culturable marine bacteria possessing proteorhodopsin. Appl. Environ. Microbiol. 73, 2290–2296 (2007).

    Article  CAS  Google Scholar 

  38. Béjà, O. et al. Unsuspected diversity among marine aerobic anoxygenic phototrophs. Nature 415, 630–633 (2002).

    Article  ADS  Google Scholar 

  39. Cho, J. C. et al. Polyphyletic photosynthetic reaction centre genes in oligotrophic marine Gammaproteobacteria. Environ. Microbiol. 9, 1456–1463 (2007).

    Article  CAS  Google Scholar 

  40. Fuchs, B. M. et al. Characterization of a marine gammaproteobacterium capable of aerobic anoxygenic photosynthesis. Proc. Natl Acad. Sci. USA 104, 2891–2896 (2007).

    Article  ADS  CAS  Google Scholar 

  41. Treusch, A. H. et al. Novel genes for nitrite reductase and Amo-related proteins indicate a role of uncultivated mesophilic Crenarchaeota in nitrogen cycling. Environ. Microbiol. 7, 1985–1995 (2005). This is the first report presenting definitive metagenomic evidence for the occurrence of nitrification-associated genes (encoding ammonia monooxygenase subunits A and B) in non-thermophilic Crenarchaeota.

    Article  CAS  Google Scholar 

  42. Konneke, M. et al. Isolation of an autotrophic ammonia-oxidizing marine archaeon. Nature 437, 543–546 (2005). This is the first report to prove the existence of chemolithoautotrophic, ammonia-oxidizing, non-thermophilic Crenarchaeota by their isolation in pure culture.

    Article  ADS  Google Scholar 

  43. Hallam, S. J. et al. Pathways of carbon assimilation and ammonia oxidation suggested by environmental genomic analyses of marine Crenarchaeota. PLoS Biol. 4, e95 (2006).

    Article  Google Scholar 

  44. Turnbaugh, P. J. et al. The human microbiome project. Nature 449, 804–810 (2007).

    Article  ADS  CAS  Google Scholar 

  45. Mou, X., Hodson, R. E. & Moran, M. A. Bacterioplankton assemblages transforming dissolved organic compounds in coastal seawater. Environ. Microbiol. 9, 2025–2037 (2007).

    Article  CAS  Google Scholar 

  46. Neufeld, J. D., Wagner, M. & Murrell, J. C. Who eats what, where and when? Isotope-labelling experiments are coming of age. ISME J. 1, 103–110 (2007).

    Article  CAS  Google Scholar 

  47. Poretsky, R. S. et al. Analysis of microbial gene transcripts in environmental samples. Appl. Environ. Microbiol. 71, 4121–4126 (2005).

    Article  CAS  Google Scholar 

  48. Frias-Lopez, J. et al. Microbial community gene expression in ocean surface waters. Proc. Natl Acad. Sci. USA 105, 3805–3810 (2008). This is the first report of a directed, massively parallel approach that sequenced a sample of the transcriptome in planktonic microbial assemblages by using pyrosequencing.

    Article  ADS  CAS  Google Scholar 

  49. Shi, Y., Tyson, G. W. & DeLong, E. F. Metatranscriptomics reveals unique microbial small RNAs in the ocean's water column. Nature 459, 266–269 (2009).

    Article  ADS  CAS  Google Scholar 

  50. Field, D. et al. The minimum information about a genome sequence (MIGS) specification. Nature Biotechnol. 26, 541–547 (2008).

    Article  CAS  Google Scholar 

  51. Markowitz, V. M. et al. IMG/M: a data management and analysis system for metagenomes. Nucleic Acids Res. 36, D534–D538 (2008).

    Article  CAS  Google Scholar 

  52. Seshadri, R., Kravitz, S. A., Smarr, L., Gilna, P. & Frazier, M. CAMERA: a community resource for metagenomics. PLoS Biol. 5, e75 (2007).

    Article  Google Scholar 

  53. Meyer, F. et al. The metagenomics RAST server — a public resource for the automatic phylogenetic and functional analysis of metagenomes. BMC Bioinformatics 9, 386 (2008).

    Article  CAS  Google Scholar 

  54. Anderson, R. et al. A new vision of ocean biogeochemistry after a decade of the Joint Global Ocean Flux Study (JGOFS). Ambio 10, 4–30 (2001).

    Google Scholar 

  55. Karl, D. M., Bidigare, R. R. & Letelier, R. M. Long-term changes in plankton community structure and productivity in the North Pacific Subtropical Gyre: the domain shift hypothesis. Deep-Sea Res. II 48, 1449–1470 (2001).

    Article  ADS  Google Scholar 

  56. Karl, D. M. Microbial oceanography: paradigms, processes and promise. Nature Rev. Microbiol. 5, 759–769 (2007).

    Article  CAS  Google Scholar 

  57. DeLong, E. F. Towards microbial systems science: integrating microbial perspective, from genomes to biomes. Environ. Microbiol. 4, 9–10 (2002).

    Article  Google Scholar 

  58. Doney, S., Abbott, M., Cullen, J., Kar, I. D. & Rothstein, L. From genes to ecosystems: the ocean's new frontier. Front. Ecol. Environ. 2, 457–466 (2004).

    Article  Google Scholar 

  59. Fuhrman, J. A. et al. Annually reoccurring bacterial communities are predictable from ocean conditions. Proc. Natl Acad. Sci. USA 103, 13104–13109 (2006).

    Article  ADS  CAS  Google Scholar 

  60. Margulies, M. et al. Genome sequencing in microfabricated high-density picolitre reactors. Nature 437, 376–380 (2005).

    Article  ADS  CAS  Google Scholar 

  61. Eid, J. et al. Real-time DNA sequencing from single polymerase molecules. Science 323, 133–138 (2009).

    Article  ADS  CAS  Google Scholar 

  62. Korlach, J. et al. Selective aluminum passivation for targeted immobilization of single DNA polymerase molecules in zero-mode waveguide nanostructures. Proc. Natl Acad. Sci. USA 105, 1176–1181 (2008).

    Article  ADS  CAS  Google Scholar 

  63. Binga, E. K., Lasken, R. S. & Neufeld, J. D. Something from (almost) nothing: the impact of multiple displacement amplification on microbial ecology. ISME J. 2, 233–241 (2008).

    Article  CAS  Google Scholar 

  64. Ishoey, T., Woyke, T., Stepanauskas, R., Novotny, M. & Lasken, R. S. Genomic sequencing of single microbial cells from environmental samples. Curr. Opin. Microbiol. 11, 198–204 (2008).

    Article  CAS  Google Scholar 

  65. Lasken, R. S. & Stockwell, T. B. Mechanism of chimera formation during the Multiple Displacement Amplification reaction. BMC Biotechnol. 7, 19 (2007).

    Article  Google Scholar 

  66. Marcy, Y. et al. Dissecting biological 'dark matter' with single-cell genetic analysis of rare and uncultivated TM7 microbes from the human mouth. Proc. Natl Acad. Sci. USA 104, 11889–11894 (2007).

    Article  ADS  CAS  Google Scholar 

  67. Sorek, R. et al. Genome-wide experimental determination of barriers to horizontal gene transfer. Science 318, 1449–1452 (2007).

    Article  ADS  CAS  Google Scholar 

  68. Béjà, O. et al. Construction and analysis of bacterial artificial chromosome libraries from a marine microbial assemblage. Environ. Microbiol. 2, 516–529 (2000).

    Article  Google Scholar 

  69. Pham, V. D., Konstantinidis, K. T., Palden, T. & DeLong, E. F. Phylogenetic analyses of ribosomal DNA-containing bacterioplankton genome fragments from a 4000 m vertical profile in the North Pacific Subtropical Gyre. Environ. Microbiol. 10, 2313–2330 (2008).

    Article  CAS  Google Scholar 

  70. Noguchi, H., Park, J. & Takagi, T. MetaGene: prokaryotic gene finding from environmental genome shotgun sequences. Nucleic Acids Res. 34, 5623–5630 (2006).

    Article  CAS  Google Scholar 

  71. Krause, L. et al. Finding novel genes in bacterial communities isolated from the environment. Bioinformatics 22, e281–e289 (2006).

    Article  CAS  Google Scholar 

  72. Krause, L. et al. Phylogenetic classification of short environmental DNA fragments. Nucleic Acids Res. 36, 2230–2239 (2008).

    Article  CAS  Google Scholar 

  73. von Mering, C. et al. Quantitative phylogenetic assessment of microbial communities in diverse environments. Science 315, 1126–1130 (2007).

    Article  ADS  CAS  Google Scholar 

  74. Tringe, S. G. et al. Comparative metagenomics of microbial communities. Science 308, 554–557 (2005).

    Article  ADS  CAS  Google Scholar 

  75. Dalevi, D. et al. Annotation of metagenome short reads using proxygenes. Bioinformatics 24, i7–i13 (2008).

    Article  Google Scholar 

  76. Harrington, E. D. et al. Quantitative assessment of protein function prediction from metagenomics shotgun sequences. Proc. Natl Acad. Sci. USA 104, 13913–13918 (2007).

    Article  ADS  CAS  Google Scholar 

  77. Rodriguez-Brito, B., Rohwer, F. & Edwards, R. A. An application of statistics to comparative metagenomics. BMC Bioinformatics 7, 162 (2006).

    Article  Google Scholar 

  78. Gianoulis, T. A. et al. Quantifying environmental adaptation of metabolic pathways in metagenomics. Proc. Natl Acad. Sci. USA 106, 1374–1379 (2009). Canonical correlation analyses identified metabolic pathways in metagenomic data sets that maximally co-varied with multiple environmental variables, revealing co-variation of amino-acid transport and cofactor synthesis across communities and environments.

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

I thank my current and former students, colleagues and co-workers for sharing their ideas, insights, enthusiasm and inspiration. Work in my laboratory is supported by grants from the US National Science Foundation, the US Department of Energy, the Gordon and Betty Moore Foundation and the Agouron Institute. This article is a contribution from the NSF Science and Technology Center, and the Center for Microbial Oceanography: Research and Education.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Additional information

Reprints and permissions information is available at http://www.nature.com/reprints.

Correspondence should be addressed to the author (delong@mit.edu).

Rights and permissions

Reprints and permissions

About this article

Cite this article

DeLong, E. The microbial ocean from genomes to biomes. Nature 459, 200–206 (2009). https://doi.org/10.1038/nature08059

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature08059

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing