Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The neural basis of Drosophila gravity-sensing and hearing

Abstract

The neural substrates that the fruitfly Drosophila uses to sense smell, taste and light share marked structural and functional similarities with ours, providing attractive models to dissect sensory stimulus processing. Here we focus on two of the remaining and less understood prime sensory modalities: graviception and hearing. We show that the fly has implemented both sensory modalities into a single system, Johnston’s organ, which houses specialized clusters of mechanosensory neurons, each of which monitors specific movements of the antenna. Gravity- and sound-sensitive neurons differ in their response characteristics, and only the latter express the candidate mechanotransducer channel NompC. The two neural subsets also differ in their central projections, feeding into neural pathways that are reminiscent of the vestibular and auditory pathways in our brain. By establishing the Drosophila counterparts of these sensory systems, our findings provide the basis for a systematic functional and molecular dissection of how different mechanosensory stimuli are detected and processed.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mechanically evoked calcium signals in JO neurons.
Figure 2: Responses of JO neuron subgroups.
Figure 3: Requirement of JO neuron subgroups for gravity detection.
Figure 4: Requirement of JO neuron subgroups for hearing.
Figure 5: Expression of nan and nompC.
Figure 6: Higher-order neurons in the AMMC.

Similar content being viewed by others

References

  1. Toma, D. P., White, K. P., Hirsch, J. & Greenspan, R. J. Identification of genes involved in Drosophila melanogaster geotaxis, a complex behavioral trait. Nature Genet. 31, 349–353 (2002)

    Article  CAS  PubMed  Google Scholar 

  2. Beckingham, K. M., Texada, M. J., Baker, D. A., Munjaal, R. & Armstrong, J. D. Genetics of graviperception in animals. Adv. Genet. 55, 105–145 (2005)

    Article  CAS  PubMed  Google Scholar 

  3. Tempel, B. L., Livingstone, M. S. & Quinn, W. G. Mutations in the dopa decarboxylase gene affect learning in Drosophila. Proc. Natl Acad. Sci. USA 81, 3577–3581 (1984)

    Article  CAS  ADS  PubMed  PubMed Central  Google Scholar 

  4. Eberl, D. F., Duyk, G. M. & Perrimon, N. A genetic screen for mutations that disrupt an auditory response in Drosophila melanogaster. Proc. Natl Acad. Sci. USA 94, 14837–14842 (1997)

    Article  CAS  ADS  PubMed  PubMed Central  Google Scholar 

  5. Tauber, E. & Eberl, D. F. Acoustic communication in Drosophila. Behav. Processes 64, 197–210 (2003)

    Article  Google Scholar 

  6. Hudspeth, A. J. in Principles of Neural Science (eds Kandel, E. R., Schwartz, J. H. & Thomas, M. J.) 590–613 (McGraw-Hill, 2000)

    Google Scholar 

  7. Goldberg, M. E. & Hudspeth, A. J. in Principles of Neural Science (eds Kandel, E. R., Schwartz, J. H. & Thomas, M. J.) 801–815 (McGraw-Hill, 2000)

    Google Scholar 

  8. Todi, S. V., Sharma, Y. & Eberl, D. F. Anatomical and molecular design of the Drosophila antenna as a flagellar auditory organ. Microsc. Res. Tech. 63, 388–389 (2004)

    Article  PubMed  PubMed Central  Google Scholar 

  9. Kim, J. et al. A TRPV family ion channel required for hearing in Drosophila. Nature 424, 81–84 (2003)

    Article  CAS  ADS  PubMed  Google Scholar 

  10. Caldwell, J. C. & Eberl, D. F. Towards a molecular understanding of Drosophila hearing. J. Neurobiol. 53, 172–189 (2002)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kernan, M. J. Mechanotransduction and auditory transduction in Drosophila. Pflugers Arch. 454, 703–720 (2007)

    Article  CAS  PubMed  Google Scholar 

  12. Göpfert, M. C. & Robert, D. The mechanical basis of Drosophila audition. J. Exp. Biol. 205, 1199–1208 (2002)

    PubMed  Google Scholar 

  13. Kamikouchi, A., Shimada, T. & Ito, K. Comprehensive classification of the auditory sensory projections in the brain of the fruit fly Drosophila melanogaster. J. Comp. Neurol. 499, 317–356 (2006)

    Article  PubMed  Google Scholar 

  14. Göpfert, M. C. & Robert, D. Biomechanics. Turning the key on Drosophila audition. Nature 411, 908 (2001)

    Article  ADS  PubMed  Google Scholar 

  15. Baker, D. A., Beckingham, K. M. & Armstrong, J. D. Functional dissection of the neural substrates for gravitaxic maze behavior in Drosophila melanogaster. J. Comp. Neurol. 501, 756–764 (2007)

    Article  PubMed  Google Scholar 

  16. Dickson, B. J. Wired for sex: the neurobiology of Drosophila mating decisions. Science 322, 904–909 (2008)

    Article  CAS  ADS  PubMed  Google Scholar 

  17. Albert, J. T., Nadrowski, B. & Göpfert, M. C. Mechanical signatures of transducer gating in the Drosophila ear. Curr. Biol. 17, 1000–1006 (2007)

    Article  CAS  PubMed  Google Scholar 

  18. Albert, J. T., Nadrowski, B., Kamikouchi, A. & Göpfert, M. C. Mechanical tracing of protein function in the Drosophila ear. Nature Protocols 10.1038/nprot.2006.364 (2006)

  19. Nadrowski, B., Albert, J. T. & Gopfert, M. C. Transducer-based force generation explains active process in Drosophila hearing. Curr. Biol. 18, 1365–1372 (2008)

    Article  CAS  PubMed  Google Scholar 

  20. Brand, A. H. & Perrimon, N. Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 118, 401–415 (1993)

    CAS  PubMed  Google Scholar 

  21. Miyawaki, A., Griesbeck, O., Heim, R. & Tsien, R. Y. Dynamic and quantitative Ca2+ measurements using improved cameleons. Proc. Natl Acad. Sci. USA 96, 2135–2140 (1999)

    Article  CAS  ADS  PubMed  PubMed Central  Google Scholar 

  22. Fiala, A. & Spall, T. In vivo calcium imaging of brain activity in Drosophila by transgenic cameleon expression. Sci. STKE 2003, pl6 (2003)

    PubMed  Google Scholar 

  23. Göpfert, M. C., Albert, J. T., Nadrowski, B. & Kamikouchi, A. Specification of auditory sensitivity by Drosophila TRP channels. Nature Neurosci. 9, 999–1000 (2006)

    Article  PubMed  Google Scholar 

  24. Sharma, Y., Cheung, U., Larsen, E. W. & Eberl, D. F. PPTGAL, a convenient Gal4 P-element vector for testing expression of enhancer fragments in Drosophila. Genesis 34, 115–118 (2002)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Benzer, S. Behavioral mutants of Drosophila isolated by countercurrent distribution. Proc. Natl Acad. Sci. USA 58, 1112–1119 (1967)

    Article  CAS  ADS  PubMed  PubMed Central  Google Scholar 

  26. Horn, E. & Lang, H.-G. Positional head reflexes and the role of the prosternal organ in the walking fly, Calliphora erythrocephala. J. Comp. Physiol. [A] 126, 137–146 (1978)

    Article  Google Scholar 

  27. Sweeney, S. T., Broadie, K., Keane, J., Niemann, H. & O’Kane, C. J. Targeted expression of tetanus toxin light chain in Drosophila specifically eliminates synaptic transmission and causes behavioral defects. Neuron 14, 341–351 (1995)

    Article  CAS  PubMed  Google Scholar 

  28. McGuire, S. E., Le, P. T., Osborn, A. J., Matsumoto, K. & Davis, R. L. Spatiotemporal rescue of memory dysfunction in Drosophila. Science 302, 1765–1768 (2003)

    Article  CAS  ADS  PubMed  Google Scholar 

  29. Thum, A. S. et al. Differential potencies of effector genes in adult Drosophila. J. Comp. Neurol. 498, 194–203 (2006)

    Article  CAS  PubMed  Google Scholar 

  30. Smith, H. K. et al. Inducible ternary control of transgene expression and cell ablation in Drosophila. Dev. Genes Evol. 206, 14–24 (1996)

    Article  CAS  PubMed  Google Scholar 

  31. Newsome, T. P., Asling, B. & Dickson, B. J. Analysis of Drosophila photoreceptor axon guidance in eye-specific mosaics. Development 127, 851–860 (2000)

    CAS  PubMed  Google Scholar 

  32. Walker, R. G., Willingham, A. T. & Zuker, C. S. A Drosophila mechanosensory transduction channel. Science 287, 2229–2234 (2000)

    Article  CAS  ADS  PubMed  Google Scholar 

  33. Liu, L. et al. Drosophila hygrosensation requires the TRP channels water witch and nanchung. Nature 450, 294–298 (2007)

    Article  CAS  ADS  PubMed  Google Scholar 

  34. Eberl, D. F., Hardy, R. W. & Kernan, M. J. Genetically similar transduction mechanisms for touch and hearing in Drosophila. J. Neurosci. 20, 5981–5988 (2000)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Otsuna, H. & Ito, K. Systematic analysis of the visual projection neurons of Drosophila melanogaster. I. Lobula-specific pathways. J. Comp. Neurol. 497, 928–958 (2006)

    Article  PubMed  Google Scholar 

  36. Bacon, J. P. & Strausfeld, N. J. The dipteran ‘Giant fibre’ pathway: neurons and signals. J. Comp. Physiol. [A] 158, 529–548 (1986)

    Article  Google Scholar 

  37. Phelan, P. et al. Mutations in shaking-B prevent electrical synapse formation in the Drosophila giant fiber system. J. Neurosci. 16, 1101–1113 (1996)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Cant, N. B. & Benson, C. G. Parallel auditory pathways: projection patterns of the different neuronal populations in the dorsal and ventral cochlear nuclei. Brain Res. Bull. 60, 457–474 (2003)

    Article  PubMed  Google Scholar 

  39. Barmack, N. H. Central vestibular system: vestibular nuclei and posterior cerebellum. Brain Res. Bull. 60, 511–541 (2003)

    Article  PubMed  Google Scholar 

  40. Büttner-Ennever, J. A. A review of otolith pathways to brainstem and cerebellum. Ann. NY Acad. Sci. 871, 51–64 (1999)

    Article  ADS  PubMed  Google Scholar 

  41. Yorozu, S. et al. Distinct sensory representations of wind and near-field sound in the Drosophila brain. Nature 10.1038/nature07843 (this issue)

  42. Ricci, A. J., Kennedy, H. J., Crawford, A. C. & Fettiplace, R. The transduction channel filter in auditory hair cells. J. Neurosci. 25, 7831–7839 (2005)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Wong, A. M., Wang, J. W. & Axel, R. Spatial representation of the glomerular map in the Drosophila protocerebrum. Cell 109, 229–241 (2002)

    Article  CAS  PubMed  Google Scholar 

  44. Keppel, G. & Wickens, T. D. Design and Analysis: A Researcher’s Handbook 4th edn (Prentice Hall, 2004)

    Google Scholar 

Download references

Acknowledgements

We thank D. F. Eberl for JO15, C. J. O’Kane for UFWTRA19, B. J. Dickson for UAS-GFP S65T and eyFLP fly strains, H. Tanimoto for flies carrying tubulin-GAL80ts and UAS-tetanus toxin, C. Kim for nandy5, M. J. Kernan for nan36a, L. Liu for nompC-GAL4.25, A. Wong and G. Struhl for UAS > CD2, y > CD8::GFP, J. Urban and G. Technau for MZ-series enhancer trap strains, the members of the NP consortium (a group of eight laboratories in Japan that together produced a large collection of GAL4 lines) and D. Yamamoto for the NP-series strains, Bloomington Stock Centre for elavc155-GAL4, D. F. Eberl and C. P. Kyriacou for courtship sound data, S. Fujita for 22C10 antibody, the Developmental Studies Hybridoma Bank for antibodies anti-Elav and nc82, T. Völler for help with calcium imaging, H. Otsuna and K. Shinomiya for preparing some figures, M. Dübbert, K. Öchsner, M. Matsukuma, S. Shuto and K. Yamashita for technical assistance, J. T. Albert, E. D. Hoopfer, B. Nadrowski, K. Endo, H. Otsuna, Y. Hiromi, E. Buchner and N. J. Strausfeld for discussion, and D. J. Anderson and S. Yorozu for sharing unpublished data. This work was supported by the Japanese Cell Science Research Foundation, the Alexander von Humboldt Foundation, and the Japan Society for the Promotion of Science (to A.K.), the DFG Collaborative Research Centre 554 (to A.F.), the Volkswagen Foundation, the BMBF Bernstein Network for Computational Neuroscience, and the DFG Research Centre Molecular Physiology of the Brain (to M.C.G.), and the Human Frontier Science Program Organisation, BIRD/Japan Science and Technology Agency, and the Japan Society for the Promotion of Science (to K.I.).

Author Contributions A.K., M.C.G. and K.I. designed research; A.K. and A.F. performed calcium imaging. A.K. and H.K.I. performed fly genetics; H.K.I. performed behavioural and anatomical experiments; T.E. performed nerve recordings; A.K., H.K.I. and O.H. performed histology; A.K., H.K.I., M.C.G. and K.I. wrote the paper; and M.C.G. and K.I. supervised the work. All authors discussed the concepts and results, and commented on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Martin C. Göpfert or Kei Ito.

Supplementary information

Supplementary Information

This file contains Supplementary Footnotes S1-S10, Supplementary Figures S1-S7 with Legends, Supplementary Table S1, Supplementary Methods and Supplementary References (PDF 3463 kb)

Supplementary Movie 1

This movie shows the spatial activation of the JO somata array (see file s1 for full legend). (MOV 1354 kb)

Supplementary Movie 2

This movie shows the 3D structure of the zones in the AMMC (see file s1 for full legend). (MOV 4859 kb)

Supplementary Movie 3

This movie shows the serial section of AMMC from the anterior to posterior (see file s1 for full legend). (MOV 9141 kb)

Supplementary Movie 4

This movie shows the counter-current apparatus in action (see file s1 for full legend). (MOV 4315 kb)

Supplementary Movie 5

This movie shows the response of the flies to a synthesized courtship pulse song (see file s1 for full legend). (MOV 8041 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kamikouchi, A., Inagaki, H., Effertz, T. et al. The neural basis of Drosophila gravity-sensing and hearing. Nature 458, 165–171 (2009). https://doi.org/10.1038/nature07810

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature07810

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing