Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

PRDM16 controls a brown fat/skeletal muscle switch

Abstract

Brown fat can increase energy expenditure and protect against obesity through a specialized program of uncoupled respiration. Here we show by in vivo fate mapping that brown, but not white, fat cells arise from precursors that express Myf5, a gene previously thought to be expressed only in the myogenic lineage. We also demonstrate that the transcriptional regulator PRDM16 (PRD1-BF1-RIZ1 homologous domain containing 16) controls a bidirectional cell fate switch between skeletal myoblasts and brown fat cells. Loss of PRDM16 from brown fat precursors causes a loss of brown fat characteristics and promotes muscle differentiation. Conversely, ectopic expression of PRDM16 in myoblasts induces their differentiation into brown fat cells. PRDM16 stimulates brown adipogenesis by binding to PPAR-γ (peroxisome-proliferator-activated receptor-γ) and activating its transcriptional function. Finally, Prdm16-deficient brown fat displays an abnormal morphology, reduced thermogenic gene expression and elevated expression of muscle-specific genes. Taken together, these data indicate that PRDM16 specifies the brown fat lineage from a progenitor that expresses myoblast markers and is not involved in white adipogenesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Knockdown of PRDM16 in primary brown fat cells induces skeletal myogenesis.
Figure 2: Brown fat and skeletal muscle arise from Myf5 -expressing precursors.
Figure 3: PRDM16 stimulates brown adipocyte differentiation in skeletal myoblasts.
Figure 4: PRDM16 binds and activates the transcriptional function of PPAR-γ.
Figure 5: Altered morphology and dysregulated gene expression in Prdm16 -deficient brown fat.

Similar content being viewed by others

References

  1. Cannon, B. & Nedergaard, J. Brown adipose tissue: function and physiological significance. Physiol. Rev. 84, 277–359 (2004)

    Article  CAS  PubMed  Google Scholar 

  2. Cousin, B. et al. Occurrence of brown adipocytes in rat white adipose tissue: molecular and morphological characterization. J. Cell Sci. 103, 931–942 (1992)

    ADS  CAS  PubMed  Google Scholar 

  3. Garruti, G. & Ricquier, D. Analysis of uncoupling protein and its mRNA in adipose tissue deposits of adult humans. Int. J. Obes. Relat. Metab. Disord. 16, 383–390 (1992)

    CAS  PubMed  Google Scholar 

  4. Guerra, C., Koza, R. A., Yamashita, H., Walsh, K. & Kozak, L. P. Emergence of brown adipocytes in white fat in mice is under genetic control. Effects on body weight and adiposity. J. Clin. Invest. 102, 412–420 (1998)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Gesta, S., Tseng, Y. H. & Kahn, C. R. Developmental origin of fat: tracking obesity to its source. Cell 131, 242–256 (2007)

    Article  CAS  PubMed  Google Scholar 

  6. Hansen, J. B. & Kristiansen, K. Regulatory circuits controlling white versus brown adipocyte differentiation. Biochem. J. 398, 153–168 (2006)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Rosen, E. D. & Spiegelman, B. M. Molecular regulation of adipogenesis. Annu. Rev. Cell Dev. Biol. 16, 145–171 (2000)

    Article  CAS  PubMed  Google Scholar 

  8. Nedergaard, J., Bengtsson, T. & Cannon, B. Unexpected evidence for active brown adipose tissue in adult humans. Am. J. Physiol. Endocrinol. Metab. 293, E444–E452 (2007)

    Article  CAS  PubMed  Google Scholar 

  9. Cederberg, A. et al. FOXC2 is a winged helix gene that counteracts obesity, hypertriglyceridemia, and diet-induced insulin resistance. Cell 106, 563–573 (2001)

    Article  CAS  PubMed  Google Scholar 

  10. Ghorbani, M., Claus, T. H. & Himms-Hagen, J. Hypertrophy of brown adipocytes in brown and white adipose tissues and reversal of diet-induced obesity in rats treated with a beta3-adrenoceptor agonist. Biochem. Pharmacol. 54, 121–131 (1997)

    Article  CAS  PubMed  Google Scholar 

  11. Kopecky, J., Clarke, G., Enerback, S., Spiegelman, B. & Kozak, L. P. Expression of the mitochondrial uncoupling protein gene from the aP2 gene promoter prevents genetic obesity. J. Clin. Invest. 96, 2914–2923 (1995)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lowell, B. B. et al. Development of obesity in transgenic mice after genetic ablation of brown adipose tissue. Nature 366, 740–742 (1993)

    Article  ADS  CAS  PubMed  Google Scholar 

  13. Christian, M. et al. RIP140-targeted repression of gene expression in adipocytes. Mol. Cell. Biol. 25, 9383–9391 (2005)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hansen, J. B. et al. Retinoblastoma protein functions as a molecular switch determining white versus brown adipocyte differentiation. Proc. Natl Acad. Sci. USA 101, 4112–4117 (2004)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  15. Scime, A. et al. Rb and p107 regulate preadipocyte differentiation into white versus brown fat through repression of PGC-1alpha. Cell Metab. 2, 283–295 (2005)

    Article  CAS  PubMed  Google Scholar 

  16. Seale, P. et al. Transcriptional control of brown fat determination by PRDM16. Cell Metab. 6, 38–54 (2007)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kajimura, S. et al. Regulation of the brown and white fat gene programs through a PRDM16/CtBP transcriptional complex. Genes Dev. 22, 1397–1409 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Tallquist, M. D., Weismann, K. E., Hellstrom, M. & Soriano, P. Early myotome specification regulates PDGFA expression and axial skeleton development. Development 127, 5059–5070 (2000)

    CAS  PubMed  Google Scholar 

  19. Srinivas, S. et al. Cre reporter strains produced by targeted insertion of EYFP and ECFP into the ROSA26 locus. BMC Dev. Biol. 1, 4 (2001)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Huh, M. S., Parker, M. H., Scime, A., Parks, R. & Rudnicki, M. A. Rb is required for progression through myogenic differentiation but not maintenance of terminal differentiation. J. Cell Biol. 166, 865–876 (2004)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kuang, S., Kuroda, K., Le Grand, F. & Rudnicki, M. A. Asymmetric self-renewal and commitment of satellite stem cells in muscle. Cell 129, 999–1010 (2007)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Dong, F. et al. Pitx2 promotes development of splanchnic mesoderm-derived branchiomeric muscle. Development 133, 4891–4899 (2006)

    Article  CAS  PubMed  Google Scholar 

  23. Himms-Hagen, J. et al. Multilocular fat cells in WAT of CL-316243-treated rats derive directly from white adipocytes. Am. J. Physiol. Cell Physiol. 279, C670–C681 (2000)

    Article  CAS  PubMed  Google Scholar 

  24. Barak, Y. et al. PPAR gamma is required for placental, cardiac, and adipose tissue development. Mol. Cell 4, 585–595 (1999)

    Article  CAS  PubMed  Google Scholar 

  25. Rosen, E. D. et al. PPAR gamma is required for the differentiation of adipose tissue in vivo and in vitro . Mol. Cell 4, 611–617 (1999)

    Article  CAS  PubMed  Google Scholar 

  26. Tontonoz, P., Hu, E. & Spiegelman, B. M. Stimulation of adipogenesis in fibroblasts by PPAR gamma 2, a lipid- activated transcription factor. Cell 79, 1147–1156 (1994)

    Article  CAS  PubMed  Google Scholar 

  27. Hu, E., Tontonoz, P. & Spiegelman, B. M. Transdifferentiation of myoblasts by the adipogenic transcription factors PPAR gamma and C/EBP alpha. Proc. Natl Acad. Sci. USA 92, 9856–9860 (1995)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  28. Barbera, M. J. et al. Peroxisome proliferator-activated receptor alpha activates transcription of the brown fat uncoupling protein-1 gene. A link between regulation of the thermogenic and lipid oxidation pathways in the brown fat cell. J. Biol. Chem. 276, 1486–1493 (2001)

    Article  CAS  PubMed  Google Scholar 

  29. Lin, J., Puigserver, P., Donovan, J., Tarr, P. & Spiegelman, B. M. Peroxisome proliferator-activated receptor gamma coactivator 1beta (PGC-1beta), a novel PGC-1-related transcription coactivator associated with host cell factor. J. Biol. Chem. 277, 1645–1648 (2002)

    Article  CAS  PubMed  Google Scholar 

  30. Huttunen, P., Hirvonen, J. & Kinnula, V. The occurrence of brown adipose tissue in outdoor workers. Eur. J. Appl. Physiol. Occup. Physiol. 46, 339–345 (1981)

    Article  CAS  PubMed  Google Scholar 

  31. Xue, B. et al. Genetic variability affects the development of brown adipocytes in white fat but not in interscapular brown fat. J. Lipid Res. 48, 41–51 (2007)

    Article  CAS  PubMed  Google Scholar 

  32. Almind, K., Manieri, M., Sivitz, W. I., Cinti, S. & Kahn, C. R. Ectopic brown adipose tissue in muscle provides a mechanism for differences in risk of metabolic syndrome in mice. Proc. Natl Acad. Sci. USA 104, 2366–2371 (2007)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  33. Asakura, A., Komaki, M. & Rudnicki, M. Muscle satellite cells are multipotential stem cells that exhibit myogenic, osteogenic, and adipogenic differentiation. Differentiation 68, 245–253 (2001)

    Article  CAS  PubMed  Google Scholar 

  34. Shefer, G., Wleklinski-Lee, M. & Yablonka-Reuveni, Z. Skeletal muscle satellite cells can spontaneously enter an alternative mesenchymal pathway. J. Cell Sci. 117, 5393–5404 (2004)

    Article  CAS  PubMed  Google Scholar 

  35. Timmons, J. A. et al. Myogenic gene expression signature establishes that brown and white adipocytes originate from distinct cell lineages. Proc. Natl Acad. Sci. USA 104, 4401–4406 (2007)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  36. Atit, R. et al. Beta-catenin activation is necessary and sufficient to specify the dorsal dermal fate in the mouse. Dev. Biol. 296, 164–176 (2006)

    Article  CAS  PubMed  Google Scholar 

  37. Mueller, E. et al. Genetic analysis of adipogenesis through peroxisome proliferator-activated receptor gamma isoforms. J. Biol. Chem. 277, 41925–41930 (2002)

    Article  CAS  PubMed  Google Scholar 

  38. Megeney, L. A., Kablar, B., Garrett, K., Anderson, J. E. & Rudnicki, M. A. MyoD is required for myogenic stem cell function in adult skeletal muscle. Genes Dev. 10, 1173–1183 (1996)

    Article  CAS  PubMed  Google Scholar 

  39. Tseng, Y. H., Kriauciunas, K. M., Kokkotou, E. & Kahn, C. R. Differential roles of insulin receptor substrates in brown adipocyte differentiation. Mol. Cell. Biol. 24, 1918–1929 (2004)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Erdjument-Bromage, H. et al. Examination of micro-tip reversed-phase liquid chromatographic extraction of peptide pools for mass spectrometric analysis. J. Chromatogr. A 826, 167–181 (1998)

    Article  CAS  PubMed  Google Scholar 

  41. Forman, B. M. et al. 15-Deoxy-delta 12, 14-prostaglandin J2 is a ligand for the adipocyte determination factor PPAR gamma. Cell 83, 803–812 (1995)

    Article  CAS  PubMed  Google Scholar 

  42. Uldry, M. et al. Complementary action of the PGC-1 coactivators in mitochondrial biogenesis and brown fat differentiation. Cell Metab. 3, 333–341 (2006)

    Article  CAS  PubMed  Google Scholar 

  43. Kinsella, T. M. & Nolan, G. P. Episomal vectors rapidly and stably produce high-titer recombinant retrovirus. Hum. Gene Ther. 7, 1405–1413 (1996)

    Article  CAS  PubMed  Google Scholar 

  44. Drori, S. et al. Hic-5 regulates an epithelial program mediated by PPARgamma. Genes Dev. 19, 362–375 (2005)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank V. Seale and F. LeGrand for help with the lineage tracing studies and R. Gupta for discussions. We are grateful to P. Soriano for the Myf5-Cre mice and F. Constantini for the R26R3-YFP reporter mice. P.S. is supported by a fellowship from the American Heart Association. S. Kajimura is supported by a fellowship from the Japan Society for the Promotion of Science. S.D. is supported by the Susan Komen Breast Cancer Foundation. This work is funded by the Picower Foundation and a National Institutes of Health grant to B.M.S. and an National Institutes of Health/National Institute of Arthritis and Musculoskeletal and Skin Diseases grant to M.A.R.

Author Contributions P.S. and B.M.S. conceived and designed the experiments. P.S., W.Y., S. Kajimura, S.C. and H.M.C. performed the experiments. P.S. analysed the data. B.B., S. Kuang, A.S., S.D., H.E., P.T., M.A.R. and D.R.B. contributed reagents/materials/analysis tools. P.S. and B.M.S. wrote the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruce M. Spiegelman.

Supplementary information

Supplementary Information

This file contains Supplementary Figures S1-S8 with Legends and Supplementary Tables S1-S2. The Supplementary Figure provide data that examines the origin of various BAT depots and defines the role of PRDM16 in specifying BAT cell fate. Table S1 is a list of proteins identified in the PRDM16 protein complex. Table S2 provides primer sequences. (PDF 4428 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seale, P., Bjork, B., Yang, W. et al. PRDM16 controls a brown fat/skeletal muscle switch. Nature 454, 961–967 (2008). https://doi.org/10.1038/nature07182

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature07182

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing