Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Quantum coherence and entanglement with ultracold atoms in optical lattices

Abstract

At nanokelvin temperatures, ultracold quantum gases can be stored in optical lattices, which are arrays of microscopic trapping potentials formed by laser light. Such large arrays of atoms provide opportunities for investigating quantum coherence and generating large-scale entanglement, ultimately leading to quantum information processing in these artificial crystal structures. These arrays can also function as versatile model systems for the study of strongly interacting many-body systems on a lattice.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Formation of optical lattices.
Figure 2: Atom sorting in an optical lattice.
Figure 3: Imaging of single atoms in a three-dimensional optical lattice.
Figure 4: Demonstration of a SWAP operation using exchange interactions.
Figure 5: Superexchange coupling between atoms on neighbouring lattice sites.
Figure 6: Array of entangled Bell pairs obtained using optical superlattices.
Figure 7: Information processing in a one-way quantum computer.

Similar content being viewed by others

References

  1. Pitaevskii, L. & Stringari, S. Bose–Einstein Condensation (Oxford Univ. Press, Oxford, 2003).

    MATH  Google Scholar 

  2. Grimm, R., Weidemü ller, M. & Ovchinnikov, Y. B. Optical dipole traps for neutral atoms. Adv. At. Mol. Opt. Phys. 42, 95–170 (2000).

    ADS  CAS  Google Scholar 

  3. Jessen, P. S. & Deutsch, I. H. Optical lattices. Adv. At. Mol. Opt. Phys. 37, 95–139 (1996).

    ADS  CAS  Google Scholar 

  4. Bloch, I., Dalibard, J. & Zwerger, W. Many-body physics with ultracold gases. Preprint at <http://arxiv.org/abs/0704.3011> (2007).

    Google Scholar 

  5. Anderson, M. H., Ensher, J. R., Matthews, M. R., Wieman, C. E. & Cornell, E. A. Observation of Bose–Einstein condensation in a dilute atomic vapor. Science 269, 198–201 (1995).

    ADS  CAS  PubMed  Google Scholar 

  6. Davis, K. B. et al. Bose–Einstein condensation in a gas of sodium atoms. Phys. Rev. Lett. 75, 3969–3973 (1995).

    ADS  CAS  PubMed  Google Scholar 

  7. Bradley, C. C., Sackett, C. A., Tollett, J. J. & Hulet, R. G. Evidence of Bose–Einstein condensation in an atomic gas with attractive interactions. Phys. Rev. Lett. 75, 1687–1690 (1995).

    ADS  CAS  PubMed  Google Scholar 

  8. DeMarco, B. & Jin, D. D. Onset of Fermi degeneracy in a trapped atomic gas. Science 285, 1703–1706 (1999).

    CAS  PubMed  Google Scholar 

  9. Schreck, F. et al. Quasipure Bose–Einstein condensate immersed in a Fermi Sea. Phys. Rev. Lett. 87, 080403 (2001).

    ADS  CAS  PubMed  Google Scholar 

  10. Truscott, A. G., Strecker, K. E., McAlexander, W. I., Partridge, G. P. & Hulet, R.G. Observation of Fermi pressure in a gas of trapped atoms. Science 291, 2570–2572 (2001).

    ADS  CAS  PubMed  Google Scholar 

  11. Fisher, M. P. A., Weichman, P. B., Grinstein, G. & Fisher, D. S. Boson localization and the superfluid-insulator transition. Phys. Rev. B 40, 546–570 (1989).

    ADS  CAS  Google Scholar 

  12. Jaksch, D., Bruder, C., Cirac, J. I., Gardiner, C. W. & Zoller, P. Cold bosonic atoms in optical lattices. Phys. Rev. Lett. 81, 3108–3111 (1998).

    ADS  CAS  Google Scholar 

  13. Greiner, M., Mandel, M. O., Esslinger, T., Hänsch, T. & Bloch, I. Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms. Nature 415, 39–44 (2002).

    ADS  CAS  PubMed  Google Scholar 

  14. Stöferle, T., Moritz, H., Schori, C., Köhl, M. & Esslinger, T. Transition from a strongly interacting 1D superfluid to a Mott insulator. Phys. Rev. Lett. 92, 130403 (2004).

    ADS  PubMed  Google Scholar 

  15. Spielman, I. B., Phillips, W. D. & Porto, J. V. The Mott insulator transition in two dimensions. Phys. Rev. Lett. 98, 080404 (2007).

    ADS  CAS  PubMed  Google Scholar 

  16. Köhl, M., Moritz, H., Stöferle, T., Günter, K. & Esslinger, T. Fermionic atoms in a three dimensional optical lattice: observing Fermi surfaces, dynamics, and interactions. Phys. Rev. Lett. 94, 080403 (2005).

    ADS  PubMed  Google Scholar 

  17. Jaksch, D. & Zoller, P. The cold atoms Hubbard toolbox. Ann. Phys. (NY) 315, 52–79 (2005).

    ADS  CAS  MATH  Google Scholar 

  18. Bloch, I. Ultracold quantum gases in optical lattices. Nature Phys. 1, 23–30 (2005).

    ADS  CAS  Google Scholar 

  19. Lewenstein, M. et al. Ultracold atomic gases in optical lattices: mimicking condensed matter physics and beyond. Adv. Phys. 56, 243–379 (2007).

    ADS  Google Scholar 

  20. Jaksch, D., Briegel, H. J., Cirac, J. I., Gardiner, C. W. & Zoller, P. Entanglement of atoms via cold controlled collisions. Phys. Rev. Lett. 82, 1975–1978 (1999).

    ADS  CAS  Google Scholar 

  21. Mandel, O. et al. Controlled collisions for multiparticle entanglement of optically trapped atoms. Nature 425, 937–940 (2003).

    ADS  CAS  PubMed  Google Scholar 

  22. Sebby-Strabley, J., Anderlini, M., Jessen, P. S. & Porto, J. V. Lattice of double wells for manipulating pairs of cold atoms. Phys. Rev. A 73, 033605 (2006).

    ADS  Google Scholar 

  23. Anderlini, M. et al. Controlled exchange interaction between pairs of neutral atoms in an optical lattice. Nature 448, 452–456 (2007).

    ADS  CAS  PubMed  Google Scholar 

  24. Fölling, S. et al. Direct observation of second-order atom tunnelling. Nature 448, 1029–1032 (2007).

    ADS  PubMed  Google Scholar 

  25. Loss, D. & DiVincenzo, D. P. Quantum computation with quantum dots. Phys. Rev. A 57, 120–126 (1998).

    ADS  CAS  Google Scholar 

  26. Petta, J. R. et al. Coherent manipulation of coupled electron spins in semiconductor quantum dots. Science 309, 2180–2184 (2005).

    ADS  CAS  PubMed  Google Scholar 

  27. Hanson, R., Kouwenhoven, L. P., Petta, J. R., Tarucha, S. & Vandersypen, L. M. K. Spins in few-electron quantum dots. Rev. Mod. Phys. 79, 1217–1265 (2007).

    ADS  CAS  Google Scholar 

  28. Beugnon, J. et al. Two-dimensional transport and transfer of a single atomic qubit in optical tweezers. Nature Phys. 3, 696–699 (2007).

    ADS  CAS  Google Scholar 

  29. Schrader, D. et al. A neutral atom quantum register. Phys. Rev. Lett. 93, 150501 (2004).

    ADS  CAS  PubMed  Google Scholar 

  30. Miroshnychenko, Y. et al. Precision preparation of strings of trapped neutral atoms. New J. Phys. 8, 191 (2006).

  31. Miroshnychenko, Y. et al. An atom-sorting machine. Nature 442, 151 (2006).

    ADS  CAS  PubMed  Google Scholar 

  32. Nelson, K. D., Li, X. & Weiss, D. S. Imaging single atoms in a three-dimensional array. Nature Phys. 3, 556–560 (2007).

    ADS  CAS  Google Scholar 

  33. Cho, J. Addressing individual atoms in optical lattices with standing-wave driving fields. Phys. Rev. Lett. 99, 020502 (2007).

    ADS  PubMed  Google Scholar 

  34. Joo, J., Lim, Y. L., Beige, A. & Knight, P. L. Single-qubit rotations in two-dimensional optical lattices with multiqubit addressing. Phys. Rev. A 74, 042344 (2006).

    ADS  Google Scholar 

  35. Gorshkov, A. V., Jiang, L., Greiner, M., Zoller, P. & Lukin, M. D. Coherent quantum optical control with subwavelength resolution. Preprint at <http://arxiv.org/abs/0706.3879> (2007).

    Google Scholar 

  36. Briegel, H. J. & Raussendorf, R. Persistent entanglement in arrays of interacting particles. Phys. Rev. Lett. 86, 910–913 (2001).

    ADS  CAS  PubMed  Google Scholar 

  37. Griessner, A., Daley, A. J., Clark, S. R., Jaksch, D. & Zoller, P. Dark-state cooling of atoms by superfluid immersion. Phys. Rev. Lett. 97, 220403 (2006).

    ADS  CAS  PubMed  Google Scholar 

  38. Griessner, A., Daley, A. J., Clark, S. R., Jaksch, D. & Zoller, P. Dissipative dynamics of atomic Hubbard models coupled to a phonon bath: dark state cooling of atoms within a Bloch band of an optical lattice. New J. Phys. 9, 44 (2007).

  39. Trotzky, S. et al. Time-resolved observation and control of superexchange interactions with ultracold atoms in optical lattices. Science 319, 295–299 (2008).

    ADS  CAS  PubMed  Google Scholar 

  40. Inouye, S. et al. Observation of Feshbach resonances in a Bose–Einstein condensate. Nature 392, 151–154 (1998).

    ADS  CAS  Google Scholar 

  41. Courteille, P., Freeland, R. S., Heinzen, D. J., van Abeelen, F. A. & Verhaar, B. J. Observation of a Feshbach resonance in cold atom scattering. Phys. Rev. Lett. 81, 69–72 (1998).

    ADS  CAS  Google Scholar 

  42. Micheli, A., Brennen, G. K. & Zoller, P. A toolbox for lattice-spin models with polar molecules. Nature Phys. 2, 341–347 (2006).

    ADS  CAS  Google Scholar 

  43. Jaksch, D. et al. Fast quantum gates for neutral atoms. Phys. Rev. Lett. 85, 2208–2211 (2000).

    ADS  CAS  PubMed  Google Scholar 

  44. Lukin, M. D. et al. Dipole blockade and quantum information processing in mesoscopic atomic ensembles. Phys. Rev. Lett. 87, 037901 (2001).

    ADS  CAS  PubMed  Google Scholar 

  45. Tong, D. et al. Local blockade of Rydberg excitation in an ultracold gas. Phys. Rev. Lett. 93, 063001 (2004).

    ADS  CAS  PubMed  Google Scholar 

  46. Singer, K., Reetz-Lamour, M., Amthor, T., Marcassa, L. G. & Weidemü ller, M. Suppression of excitation and spectral broadening induced by interactions in a cold gas of Rydberg atoms. Phys. Rev. Lett. 93, 163001 (2004).

    ADS  PubMed  Google Scholar 

  47. Liebisch, T. C., Reinhard, A., Berman, P. R. & Raithel, G. Atom counting statistics in ensembles of interacting Rydberg atoms. Phys. Rev. Lett. 95, 253002 (2005).

    ADS  PubMed  Google Scholar 

  48. Heidemann, R. et al. Evidence for coherent collective Rydberg excitation in the strong blockade regime. Phys. Rev. Lett. 99, 163601 (2007).

    ADS  PubMed  Google Scholar 

  49. Hayes, D., Julienne, P. S. & Deutsch, I. H. Quantum logic via the exchange blockade in ultracold collisions. Phys. Rev. Lett. 98, 070501 (2007).

    ADS  PubMed  Google Scholar 

  50. Auerbach, A. Interacting Electrons and Quantum Magnetism (Springer, New York, 2006).

    Google Scholar 

  51. Duan, L.-M., Demler, E. & Lukin, M. D. Controlling spin exchange interactions of ultracold atoms in an optical lattice. Phys. Rev. Lett. 91, 090402 (2003).

    ADS  PubMed  Google Scholar 

  52. Kuklov, A. B. & Svistunov, B. V. Counterflow superfluidity of two-species ultracold atoms in a commensurate optical lattice. Phys. Rev. Lett. 90, 100401 (2003).

    ADS  CAS  PubMed  Google Scholar 

  53. Widera, A. et al. Coherent collisional spin dynamics in optical lattices. Phys. Rev. Lett. 95, 190405 (2005).

    ADS  PubMed  Google Scholar 

  54. Vaucher, B., Nunnenkamp, A. & Jaksch, D. Creation of resilient entangled states and a resource for measurement-based quantum computation with optical superlattices. Preprint at 〈http://arxiv.org/abs/0710.5099〉 (2007).

  55. Deutsch, D. Quantum computational networks. Proc. R. Soc. Lond. A 425, 73–90 (1989).

    ADS  MathSciNet  MATH  Google Scholar 

  56. Yao, A. in Proc. 34th Annu. Symp. Found. Comput. Sci. 352–361 (IEEE Computer Soc., Los Alamitos, 1993).

    Google Scholar 

  57. Barenco, A. et al. Elementary gates for quantum computation. Phys. Rev. A 52, 3457–3467 (1995).

    ADS  CAS  PubMed  Google Scholar 

  58. Farhi, E. et al. A quantum adiabatic evolution algorithm applied to random instances of an NP-complete problem. Science 292, 472–476 (2001).

    ADS  MathSciNet  CAS  PubMed  MATH  Google Scholar 

  59. Deutsch, D. Quantum-theory, the Church–Turing principle and the universal quantum computer. Proc. R. Soc. Lond. A 400, 97–117 (1985).

    ADS  MathSciNet  MATH  Google Scholar 

  60. Bernstein, E. & Vazirani, U. in Proc. 25th Annu. ACM Symp. Theor. Comput. 11–20 (ACM Press, New York, 1993).

    Google Scholar 

  61. Gottesman, D. & Chuang, I. L. Demonstrating the viability of universal quantum computation using teleportation and single-qubit operations. Nature 402, 390–393 (1999).

    ADS  CAS  Google Scholar 

  62. Knill, E., Laflamme, R. & Milburn, G. J. A scheme for efficient quantum computation with linear optics. Nature 409, 46–52 (2001).

    ADS  CAS  PubMed  Google Scholar 

  63. Nielsen, M. A. Quantum computation by measurement and quantum memory. Phys. Lett. A 308, 96–100 (2003).

    ADS  MathSciNet  CAS  MATH  Google Scholar 

  64. Raussendorf, R. & Briegel, H. J. A One-way quantum computer. Phys. Rev. Lett. 86, 5188–5191 (2001).

    ADS  CAS  PubMed  Google Scholar 

  65. Raussendorf, R. & Briegel, H. J. Computational model underlying the one-way quantum computer. Quant. Info. Comput. 2, 443–486 (2002).

    MathSciNet  MATH  Google Scholar 

  66. Walther, P. et al. Experimental one-way quantum computing. Nature 434, 169–176 (2005).

    ADS  CAS  PubMed  Google Scholar 

  67. Kiesel, N. et al. Experimental analysis of a four-qubit photon cluster state. Phys. Rev. Lett. 95, 210502 (2005).

    ADS  PubMed  Google Scholar 

  68. Gross, D., Eisert, J., Schuch, N. & Perez-Garcia, D. Measurement-based quantum computation beyond the one-way model. Phys. Rev. A 76, 052315 (2007).

    ADS  Google Scholar 

  69. Van den Nest, M., Miyake, A., Dür, W. & Briegel, H. J. Universal resources for measurement-based quantum computation. Phys. Rev. Lett. 97, 150504 (2006).

    ADS  PubMed  Google Scholar 

  70. Van den Nest, M., Dü r, W., Miyake, A. & Briegel, H. J. Fundamentals of universality in one-way quantum computation. New J. Phys. 9, 204 (2007).

    ADS  MathSciNet  Google Scholar 

  71. Gross, D. & Eisert, J. Novel schemes for measurement-based quantum computation. Phys. Rev. Lett. 98, 220503 (2007).

    ADS  CAS  PubMed  Google Scholar 

  72. Browne, D. E. et al. Phase transition of computational power in the resource states for one-way quantum computation. Preprint at 〈http://arxiv.org/abs/0709.1729〉 (2007).

  73. Verstraete, F. & Cirac, J. I. Valence-bond states for quantum computation. Phys. Rev. A 70, 060302 (2004).

    ADS  Google Scholar 

  74. Aliferis, P. & Leung, D. W. Computation by measurements: a unifying picture. Phys. Rev. A 70, 062314 (2004).

    ADS  Google Scholar 

  75. Childs, A. M., Leung, D. W. & Nielsen, M. A. Unified derivations of measurement-based schemes for quantum computation. Phys. Rev. A 71, 032318 (2005).

    ADS  Google Scholar 

  76. Jorrand, P. & Perdrix, S. Unifying quantum computation with projective measurements only and one-way quantum computation. Preprint at 〈http://arxiv.org/abs/quant-ph/0404125〉 (2004).

  77. Shor, P. W. in Proc. 37th Annu. Symp. Found. Comput. Sci. 56–65 (IEEE Computer Soc., Los Alamitos, 1996).

    Google Scholar 

  78. Aharonov, D. & Ben-Or, M. in Proc. 29th Annu. ACM Symp. Theor. Comput. 176–188 (ACM Press, New York, 1997).

    Google Scholar 

  79. Gottesman, D. Stabilizer Codes and Quantum Error Correction. PhD thesis, California Inst.Technol. (1997).

    Google Scholar 

  80. Knill, E., Laflamme, R. & Zurek, W. H. Resilient quantum computation: error models and thresholds. Proc. R. Soc. Lond. A 454, 365–384 (1998).

    ADS  MATH  Google Scholar 

  81. Kitaev, A. Y. Fault-tolerant quantum computation by anyons. Ann. Phys. (NY) 303, 2–30 (2003).

    ADS  MathSciNet  CAS  MATH  Google Scholar 

  82. Raussendorf, R. & Harrington, J. Fault-tolerant quantum computation with high threshold in two dimensions. Phys. Rev. Lett. 98, 190504 (2007).

    ADS  PubMed  Google Scholar 

  83. Hofstetter, W., Cirac, J. I., Zoller, P., Demler, E. & Lukin, M. D. High-temperature superfluidity of fermionic atoms in optical lattices. Phys. Rev. Lett. 89, 220407 (2002).

    ADS  CAS  PubMed  Google Scholar 

  84. Lee, P. A., Nagaosa, N. & Wen, X.-G. Doping a Mott insulator: physics of high-temperature superconductivity. Rev. Mod. Phys. 78, 17–85 (2006).

    ADS  CAS  Google Scholar 

  85. Anderson, P. W. The resonating valence bond state in La2CuO4 and superconductivity. Science 235, 1196–1198 (1987).

    ADS  CAS  PubMed  Google Scholar 

  86. Werner, F., Parcollet, O., Georges, A. & Hassan, S. R. Interaction-induced adiabatic cooling and antiferromagnetism of cold fermions in optical lattices. Phys. Rev. Lett. 95, 056401 (2005).

    ADS  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

I thank H. Briegel for discussions, and the German Research Foundation (DFG), the European Union (through the OLAQUI and SCALA projects) and the Air Force Office of Scientific Research (AFOSR) for support.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Additional information

Correspondence should be addressed to the author (bloch@uni-mainz.de).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bloch, I. Quantum coherence and entanglement with ultracold atoms in optical lattices. Nature 453, 1016–1022 (2008). https://doi.org/10.1038/nature07126

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature07126

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing