Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The developmental genetics of congenital heart disease

Abstract

Congenital heart disease is the leading cause of infant morbidity in the Western world, but only in the past ten years has its aetiology been understood. Recent studies have uncovered the genetic basis for some common forms of the disease and provide new insight into how the heart develops and how dysregulation of heart development leads to disease.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Congenital heart defects.
Figure 2: Heart development.
Figure 3: Origin and genetic aetiology of congenital heart disease.
Figure 4: Modelling human congenital heart diseases in mice, and dosage-dependent regulation of cardiac morphogenesis.

Similar content being viewed by others

References

  1. Hoffman, J. I. & Kaplan, S. The incidence of congenital heart disease. J. Am. Coll. Cardiol. 39, 1890–1900 (2002).

    Article  Google Scholar 

  2. Hoffman, J. I. Incidence of congenital heart disease: II. Prenatal incidence. Pediatr. Cardiol. 16, 155–165 (1995).

    Article  CAS  Google Scholar 

  3. Miller, S. P. et al. Abnormal brain development in newborns with congenital heart disease. N. Engl. J. Med. 357, 1928–1938 (2007).

    Article  ADS  CAS  Google Scholar 

  4. Pierpont, M. E. et al. Genetic basis for congenital heart defects: current knowledge: a scientific statement from the American Heart Association Congenital Cardiac Defects Committee, Council on Cardiovascular Disease in the Young: endorsed by the American Academy of Pediatrics. Circulation 115, 3015–3038 (2007).

    Article  Google Scholar 

  5. Jenkins, K. J. et al. Noninherited risk factors and congenital cardiovascular defects: current knowledge: a scientific statement from the American Heart Association Council on Cardiovascular Disease in the Young: endorsed by the American Academy of Pediatrics. Circulation 115, 2995–3014 (2007).

    Article  Google Scholar 

  6. Cooper, W. O. et al., Major congenital malformations after first-trimester exposure to ACE inhibitors. N. Engl. J. Med. 354, 2443–2451 (2006).

    Article  CAS  Google Scholar 

  7. Olson, E. N. Gene regulatory networks in the evolution and development of the heart. Science 313, 1922–1927 (2006).

    Article  ADS  CAS  Google Scholar 

  8. Srivastava, D. Making or breaking the heart: from lineage determination to morphogenesis. Cell 126, 1037–1048 (2006).

    Article  CAS  Google Scholar 

  9. Buckingham, M., Meilhac, S. & Zaffran, S. Building the mammalian heart from two sources of myocardial cells. Nature Rev. Genet. 6, 826–835 (2005). The concept of the SHF is outlined clearly in this review.

    Article  CAS  Google Scholar 

  10. Kattman, S. J., Huber, T. L. & Keller, G. M. Multipotent flk-1+ cardiovascular progenitor cells give rise to the cardiomyocyte, endothelial, and vascular smooth muscle lineages. Dev. Cell 11, 723–732 (2006).

    Article  CAS  Google Scholar 

  11. Wu, S. M. et al. Developmental origin of a bipotential myocardial and smooth muscle cell precursor in the mammalian heart. Cell 127, 1137–1150 (2006).

    Article  CAS  Google Scholar 

  12. Moretti, A. et al. Multipotent embryonic ISL1+ progenitor cells lead to cardiac, smooth muscle, and endothelial cell diversification. Cell 127, 1151–1165 (2006). Refs 10–12 show that a single committed progenitor gives rise to all three cardiac cell types.

    Article  CAS  Google Scholar 

  13. Tzahor, E. Wnt/β-catenin signaling and cardiogenesis: timing does matter. Dev. Cell 13, 10–13 (2007).

    Article  CAS  Google Scholar 

  14. Schoenebeck, J. J., Keegan, B. R. & Yelon, D. Vessel and blood specification override cardiac potential in anterior mesoderm. Dev. Cell 13, 254–267 (2007).

    Article  CAS  Google Scholar 

  15. Keegan, B. R., Feldman, J. L., Begemann, G., Ingham, P. W. & Yelon, D. Retinoic acid signaling restricts the cardiac progenitor pool. Science 307, 247–249 (2005).

    Article  ADS  CAS  Google Scholar 

  16. Prall, O. W. et al. An Nkx2-5/Bmp2/Smad1 negative feedback loop controls second heart field progenitor specification and proliferation. Cell 128, 947–959 (2007).

    Article  CAS  Google Scholar 

  17. Lickert, H. et al. Baf60c is essential for function of BAF chromatin remodelling complexes in heart development. Nature 432, 107–112 (2004).

    Article  ADS  CAS  Google Scholar 

  18. Gottlieb, P. D. et al. Bop encodes a muscle-restricted protein containing MYND and SET domains and is essential for cardiac differentiation and morphogenesis. Nature Genet. 31, 25–32 (2002).

    Article  CAS  Google Scholar 

  19. Montgomery, R. L. et al. Histone deacetylases 1 and 2 redundantly regulate cardiac morphogenesis, growth, and contractility. Genes Dev. 21, 1790–1802 (2007).

    Article  CAS  Google Scholar 

  20. Basson, C. T. et al. Mutations in human TBX5 cause limb and cardiac malformation in Holt–Oram syndrome. Nature Genet. 15, 30–35 (1997).

    Article  CAS  Google Scholar 

  21. Li, Q. Y. et al. Holt–Oram syndrome is caused by mutations in TBX5, a member of the Brachyury (T) gene family. Nature Genet. 15, 21–29 (1997).

    Article  Google Scholar 

  22. Schott, J.-J. et al. Congenital heart disease caused by mutations in the transcription factor NKX2-5 . Science 281, 108–111 (1998).This paper describes the first single-gene defect identified in non-syndromic congenital heart disease and directly links an important developmental regulator to disease.

    Article  ADS  CAS  Google Scholar 

  23. Benson, D. W. et al. Mutations in the cardiac transcription factor NKX2.5 affect diverse cardiac developmental pathways. J. Clin. Invest. 104, 1567–1573 (1999).

    Article  CAS  Google Scholar 

  24. Biben, C. et al. Cardiac septal and valvular dysmorphogenesis in mice heterozygous for mutations in the homeobox gene Nkx2-5. Circ. Res. 87, 888–895 (2000).

    Article  CAS  Google Scholar 

  25. Bruneau, B. G. et al. A murine model of Holt–Oram syndrome defines roles of the T-box transcription factor Tbx5 in cardiogenesis and disease. Cell 106, 709–721 (2001).

    Article  CAS  Google Scholar 

  26. Hiroi, Y. et al. Tbx5 associates with Nkx2-5 and synergistically promotes cardiomyocyte differentiation. Nature Genet. 28, 276–280 (2001).

    Article  CAS  Google Scholar 

  27. Garg, V. et al. GATA4 mutations cause human congenital heart defects and reveal an interaction with TBX5. Nature 424, 443–447 (2003). Refs 25–27 show that interactions between cardiac transcription factors are an important mechanism for congenital heart diseases.

    Article  ADS  CAS  Google Scholar 

  28. Lindsay, E. A. et al. Tbx1 haploinsufficiency in the DiGeorge syndrome region causes aortic arch defects in mice. Nature 410, 97–101 (2001).

    Article  ADS  CAS  Google Scholar 

  29. Merscher, S. et al. TBX1 is responsible for cardiovascular defects in velo-cardio-facial/DiGeorge syndrome. Cell 104, 619–629 (2001). Refs 28 and 29 deployed mouse genome engineering to pinpoint Tbx1 as a major causative gene in the 22q11 microdeletion syndrome critical region.

    Article  CAS  Google Scholar 

  30. Yagi, H. et al. Role of TBX1 in human del22q11.2 syndrome. Lancet 362, 1366–1373 (2003).

    Article  CAS  Google Scholar 

  31. Hu, T. et al. Tbx1 regulates fibroblast growth factors in the anterior heart field through a reinforcing autoregulatory loop involving forkhead transcription factors. Development 131, 5491–5502 (2004).

    Article  CAS  Google Scholar 

  32. Xu, H. et al. Tbx1 has a dual role in the morphogenesis of the cardiac outflow tract. Development 131, 3217–3227 (2004).

    Article  CAS  Google Scholar 

  33. Guris, D. L., Duester, G., Papaioannou, V. E. & Imamoto, A. Dose-dependent interaction of Tbx1 and Crkl and locally aberrant RA signaling in a model of del22q11 syndrome. Dev. Cell 10, 81–92 (2006).

    Article  CAS  Google Scholar 

  34. Moon, A. M. et al. Crkl deficiency disrupts Fgf8 signaling in a mouse model of 22q11 deletion syndromes. Dev. Cell 10, 71–80 (2006).

    Article  CAS  Google Scholar 

  35. Al-Baradie, R. et al. Duane radial ray syndrome (Okihiro syndrome) maps to 20q13 and results from mutations in SALL4, a new member of the SAL family. Am. J. Hum. Genet. 71, 1195–1199 (2002).

    Article  CAS  Google Scholar 

  36. Kohlhase, J. et al. Okihiro syndrome is caused by SALL4 mutations. Hum. Mol. Genet. 11, 2979–2987 (2002).

    Article  CAS  Google Scholar 

  37. Kirk, E. P. et al. Mutations in cardiac T-box factor gene TBX20 are associated with diverse cardiac pathologies, including defects of septation and valvulogenesis and cardiomyopathy. Am. J. Hum. Genet. 81, 280–291 (2007).

    Article  CAS  Google Scholar 

  38. Koshiba-Takeuchi, K. et al. Cooperative and antagonistic interactions between Sall4 and Tbx5 pattern the mouse limb and heart. Nature Genet. 38, 175–183 (2006).

    Article  CAS  Google Scholar 

  39. Satoda, M. et al. Mutations in TFAP2B cause Char syndrome, a familial form of patent ductus arteriosus. Nature Genet. 25, 42–46 (2000).

    Article  CAS  Google Scholar 

  40. Muncke, N. et al. Missense mutations and gene interruption in PROSIT240, a novel TRAP240-like gene, in patients with congenital heart defect (transposition of the great arteries). Circulation 108, 2843–2850 (2003).

    Article  CAS  Google Scholar 

  41. Hove, J. R. et al. Intracardiac fluid forces are an essential epigenetic factor for embryonic cardiogenesis. Nature 421, 172–177 (2003).

    Article  ADS  CAS  Google Scholar 

  42. Auman, H. J. et al. Functional modulation of cardiac form through regionally confined cell shape changes. PLoS Biol. 5, e53 (2007).

    Article  Google Scholar 

  43. Yashiro, K., Shiratori, H. & Hamada, H. Haemodynamics determined by a genetic programme govern asymmetric development of the aortic arch. Nature 450, 285–288 (2007). This paper links genetic programming and haemodynamics in the development of congenital heart diseases in a mouse model.

    Article  ADS  CAS  Google Scholar 

  44. Ching, Y. H. et al. Mutation in myosin heavy chain 6 causes atrial septal defect. Nature Genet. 37, 423–428 (2005).

    Article  CAS  Google Scholar 

  45. Barnett, J. V. & Desgrosellier, J. S. Early events in valvulogenesis: a signaling perspective. Birth Defects Res. C Embryo Today 69, 58–72 (2003).

    Article  CAS  Google Scholar 

  46. Timmerman, L. A. et al. Notch promotes epithelial–mesenchymal transition during cardiac development and oncogenic transformation. Genes Dev. 18, 99–115 (2004).

    Article  CAS  Google Scholar 

  47. Garg, V. et al. Mutations in NOTCH1 cause aortic valve disease. Nature 437, 270–274 (2005).

    Article  ADS  CAS  Google Scholar 

  48. Li, L. et al. Alagille syndrome is caused by mutations in human Jagged1, which encodes a ligand for Notch1. Nature Genet. 16, 243–251 (1997).

    Article  CAS  Google Scholar 

  49. Oda, T. et al. Mutations in the human Jagged1 gene are responsible for Alagille syndrome. Nature Genet. 16, 235–242 (1997).

    Article  CAS  Google Scholar 

  50. McDaniell, R. et al. NOTCH2 mutations cause Alagille syndrome, a heterogeneous disorder of the notch signaling pathway. Am. J. Hum. Genet. 79, 169–173 (2006).

    Article  CAS  Google Scholar 

  51. Gelb, B. D. & Tartaglia, M. Noonan syndrome and related disorders: dysregulated RAS-mitogen activated protein kinase signal transduction. Hum. Mol. Genet. 15 (Spec. No. 2), R220–R226 (2006).

    Article  CAS  Google Scholar 

  52. Pandit, B. et al. Gain-of-function RAF1 mutations cause Noonan and LEOPARD syndromes with hypertrophic cardiomyopathy. Nature Genet. 39, 1007–1012 (2007).

    Article  CAS  Google Scholar 

  53. Razzaque, M. A. et al. Germline gain-of-function mutations in RAF1 cause Noonan syndrome. Nature Genet. 39, 1013–1017 (2007).

    Article  CAS  Google Scholar 

  54. Roberts, A. E. et al. Germline gain-of-function mutations in SOS1 cause Noonan syndrome. Nature Genet. 39, 70–74 (2007).

    Article  CAS  Google Scholar 

  55. Tartaglia, M. et al. Gain-of-function SOS1 mutations cause a distinctive form of Noonan syndrome. Nature Genet. 39, 75–79 (2007).

    Article  CAS  Google Scholar 

  56. Araki, T. et al. Mouse model of Noonan syndrome reveals cell type- and gene dosage-dependent effects of Ptpn11 mutation. Nature Med. 10, 849–857 (2004).

    Article  CAS  Google Scholar 

  57. Ambros, V. The functions of animal microRNAs. Nature 431, 350–355 (2004).

    Article  ADS  CAS  Google Scholar 

  58. van Rooij, E. & Olson, E. N. MicroRNAs: powerful new regulators of heart disease and provocative therapeutic targets. J. Clin. Invest. 117, 2369–2376 (2007).

    Article  CAS  Google Scholar 

  59. Zhao, Y., Samal, E. & Srivastava, D. Serum response factor regulates a muscle-specific microRNA that targets Hand2 during cardiogenesis. Nature 436, 214–220 (2005).

    Article  ADS  CAS  Google Scholar 

  60. Zhao, Y. et al. Dysregulation of cardiogenesis, cardiac conduction, and cell cycle in mice lacking miRNA-1-2. Cell 129, 303–317 (2007). This paper demonstrates the importance of a cardiac miRNA in heart development, suggesting a possible new disease mechanism.

    Article  CAS  Google Scholar 

  61. Warnes, C. A. The adult with congenital heart disease: born to be bad? J. Am. Coll. Cardiol. 46, 1–8 (2005).

    Article  Google Scholar 

  62. Bisping, E. et al. Gata4 is required for maintenance of postnatal cardiac function and protection from pressure overload-induced heart failure. Proc. Natl Acad. Sci. USA 103, 14471–14476 (2006).

    Article  ADS  CAS  Google Scholar 

  63. Pashmforoush, M. et al. Nkx2-5 pathways and congenital heart disease; loss of ventricular myocyte lineage specification leads to progressive cardiomyopathy and complete heart block. Cell 117, 373–386 (2004).

    Article  CAS  Google Scholar 

  64. Zhou, W. et al. Modulation of morphogenesis by noncanonical Wnt signaling requires ATF/CREB family-mediated transcriptional activation of TGFβ2. Nature Genet. 39, 1225–1234 (2007).

    Article  CAS  Google Scholar 

  65. Takeuchi, J. K. et al. Tbx20 dose-dependently regulates transcription factor networks required for mouse heart and motoneuron development. Development 132, 2463–2474 (2005).

    Article  CAS  Google Scholar 

  66. Stennard, F. A. et al. Murine T-box transcription factor Tbx20 acts as a repressor during heart development, and is essential for adult heart integrity, function and adaptation. Development 132, 2451–2462 (2005).

    Article  CAS  Google Scholar 

  67. Jiao, K. et al. An essential role of Bmp4 in the atrioventricular septation of the mouse heart. Genes Dev. 17, 2362–2367 (2003).

    Article  CAS  Google Scholar 

  68. Rajagopal, S. K. et al. Spectrum of heart disease associated with murine and human GATA4 mutation. J. Mol. Cell. Cardiol. 43, 677–685 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

I thank J. Hoffman and B. Conklin for helpful discussion, F. Yeung for artwork, and G. Howard for editorial assistance. This work was funded by the J. David Gladstone Institutes and an endowed chair from the William H. Younger family.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Additional information

Correspondence should be addressed to the author (bbruneau@gladstone.ucsf.edu).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bruneau, B. The developmental genetics of congenital heart disease. Nature 451, 943–948 (2008). https://doi.org/10.1038/nature06801

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature06801

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing