Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Trench-parallel flow and seismic anisotropy in the Mariana and Andean subduction systems

Abstract

Shear-wave splitting measurements above the mantle wedge of the Mariana1 and southern Andean2,3 subduction zones show trench-parallel seismically fast directions close to the trench and abrupt rotations to trench-perpendicular anisotropy in the back arc. These patterns of seismic anisotropy may be caused by three-dimensional flow associated with along-strike variations in slab geometry1,2,3,4,5. The Mariana and Andean subduction systems are associated with the largest along-strike variations of slab geometry observed on Earth6,7 and are ideal for testing the link between slab geometry and solid-state creep processes in the mantle. Here we show, with fully three-dimensional non-newtonian subduction zone models, that the strong curvature of the Mariana slab and the transition to shallow slab dip in the Southern Andes give rise to strong trench-parallel stretching in the warm-arc and warm-back-arc mantle and to abrupt rotations in stretching directions that are accompanied by strong trench-parallel stretching. These models show that the patterns of shear-wave splitting observed in the Mariana and southern Andean systems may be caused by significant three-dimensional flow induced by along-strike variations in slab geometry.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Observations and approximate slab model of the Mariana subduction system.
Figure 2: Finite strain calculations from the Mariana model.
Figure 3: Observations and approximate slab model of the Andean subduction system.
Figure 4: Finite strain calculations from the Andean model.

Similar content being viewed by others

References

  1. Pozgay, S. H., Wiens, D. A., Conder, J. A., Shiobara, H. & Sugioka, H. Complex mantle flow in the Mariana subduction system: evidence from shear wave splitting. Geophys. J. Int. 170, 371–386 (2007)

    Article  ADS  Google Scholar 

  2. Anderson, M. L., Zandt, G., Triep, E., Fouch, M. & Beck, S. Anisotropy and mantle flow in the Chile-Argentina subduction zone from shear wave splitting analysis. Geophys. Res. Lett. 31 doi: 10.1029/2004GL020906 (2004)

  3. Anderson, M., Zandt, G. & Wagner, L. Along-strike mantle flow variations in a segment of the South American Subduction zone, Chile and Argentina. Earth Planet. Sci. Lett. (submitted)

  4. Hall, C. E., Fischer, K. M., Parmentier, E. M. & Blackman, D. K. The influence of plate motions on three-dimensional back arc mantle flow and shear wave splitting. J. Geophys. Res. 105, 28009–28033 (2000)

    Article  ADS  Google Scholar 

  5. Park, J. & Levin, V. Seismic anisotropy: tracing plate dynamics in the mantle. Science 296, 485–489 (2002)

    Article  CAS  ADS  Google Scholar 

  6. Syracuse, E. M. & Abers, G. A. Global compilation of variations in slab depth beneath arc volcanoes and implications. Geochem. Geophys. Geosyst. 7 doi: 10.1029/2005GC001045 (2006)

  7. Anderson, M., Alvarado, P., Zandt, G. & Beck, S. Geometry and brittle deformation of the subducting Nazca plate, central Chile and Argentina. Geophys. J. Int. 171 doi: 10.1111/j.1365–246X.2007.03483.x (2007)

  8. Wiens, D. A. & Smith, G. P. in Inside The Subduction Factory (ed. Eiler, J.) 83–105 (Geophysical Monograph 138, American Geophysical Union, Washington DC. (2003)

    Google Scholar 

  9. Fischer, K. M., Parmentier, E. M., Stine, A. R. & Wolf, E. Modelling anisotropy and plate-driven flow in the Tonga subduction zone back arc. J. Geophys. Res. 105, 181–191 (2000)

    Google Scholar 

  10. Kneller, E. A., van Keken, P. E., Karato, S. & Park, J. B-type olivine fabric in the mantle wedge: Insights from high-resolution non-Newtonian subduction zone models. Earth Planet. Sci. Lett. 237, 781–797 (2005)

    Article  CAS  ADS  Google Scholar 

  11. Katayama, I. & Karato, S. Effect of temperature on the B- to C-type olivine fabric transition and implication for flow pattern in subduction zones. Phys. Earth Planet. Inter. 157, 33–45 (2006)

    Article  CAS  ADS  Google Scholar 

  12. Kneller, E. A., van Keken, P. E., Katayama, I. & Karato, S. Stress, strain, and B-type olivine fabric in the fore-arc mantle: sensitivity tests using high-resolution steady-state subduction zone models. J. Geophys. Res. 112 B04406 doi: 10.1029/2006JB004544 (2007)

    Article  ADS  Google Scholar 

  13. Holtzman, B. K. et al. Melt segregation and strain partitioning: implications for seismic anisotropy and mantle flow. Science 301, 1227–1230 (2003)

    Article  CAS  ADS  Google Scholar 

  14. Kendall, J., Stuart, G. W., Ebinger, C. J., Bastow, I. D. & Keir, D. Magma-assisted rifting in Ethiopia. Nature 433, 146–148 (2005)

    Article  CAS  ADS  Google Scholar 

  15. Honda, S. & Saito, M. Small-scale convection under the back-arc occurring in the low viscosity wedge. Earth Planet. Sci. Lett. 216, 703–715 (2003)

    Article  CAS  ADS  Google Scholar 

  16. Mehl, L., Hacker, B. R., Hirth, G. & Kelemen, P. B. Arc-parallel flow within the mantle wedge. Evidence from the accreted Talkeetna arc, south central Alaska. J. Geophys. Res. 108 doi: 10.1029/2002JB002233 (2003)

  17. Russo, R. M. & Silver, P. G. Trench-parallel flow beneath the Nazca plate from seismic anisotropy. Science 263, 1105–1111 (1994)

    Article  CAS  ADS  Google Scholar 

  18. Ismaïl, B. W. & Mainprice, D. An olivine fabric database: an overview of upper mantle fabrics and seismic anisotropy. Tectonophysics 196, 145–157 (1998)

    Article  ADS  Google Scholar 

  19. Kaneshima, S. & Silver, P. G. Anisotropic loci in the mantle beneath central Peru. Phys. Earth Planet. Inter. 88, 257–272 (1995)

    Article  ADS  Google Scholar 

  20. Kneller, E. A. & van Keken, P. E. The effect of three-dimensional slab geometry on deformation in the mantle wedge: implications for shear wave anisotropy. Geochem. Geophys. Geosyst. (in the press)

  21. Karato, S. & Jung, H. Effects of pressure on high-temperature dislocation creep in olivine. Phil. Mag. 83, 401–414 (2003)

    Article  CAS  ADS  Google Scholar 

  22. Mei, S. & Kohlstedt, D. L. Influence of water on plastic deformation of olivine aggregates. 1. Diffusion creep regime. J. Geophys. Res. 105, 21457–21469 (2000)

    Article  CAS  ADS  Google Scholar 

  23. Kaminski, E. & Ribe, N. M. Time scales for the evolution of seismic anisotropy in mantle flow. Geochem. Geophys. Geosyst. 158, 744–752 (2002)

    Google Scholar 

  24. Lassak, T. M., Fouch, M. J., Hall, C. E. & Kaminski, E. Seismic characterization of mantle flow in subduction systems: can we resolve a hydrated mantle wedge? Earth Planet. Sci. Lett. 243, 632–649 (2006)

    Article  CAS  ADS  Google Scholar 

  25. van Keken, P. E., Kiefer, B. & Peacock, S. M. High-resolution models of subduction zones: implications for mineral dehydration reactions and the transport of water into the deep mantle. Geochem. Geophys. Geosyst. 3 doi: 10.1029/2001DC000256 (2002)

  26. Behn, M. D., Hirth, G. & Kelemen, P. B. Trench-parallel anisotropy produced by foundering of arc lower crust. Science 317, 108–111 (2007)

    Article  CAS  ADS  Google Scholar 

  27. Cuvelier, C., Segal, A. & Van Steenhoven, A. A. Finite Element Methods and Navier-Stokes Equations (Reidel Publishing, Dordrecht, 1986)

    Book  Google Scholar 

Download references

Acknowledgements

We thank M. Anderson for providing slab contours of the southern Andean slab and insights on possible deformation processes in the Andean mantle wedge. We thank S. Pozgay and D. Wiens for discussions on the origin of trench-parallel anisotropy in the Mariana subduction system. We also thank G. Abers and E. Syracuse for discussions on three-dimensional slab geometry and kinematics. This research was supported by the National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erik A. Kneller.

Supplementary information

Supplementary Figures

The file contains Supplementary Figures S1-S4 with Legends. (PDF 489 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kneller, E., van Keken, P. Trench-parallel flow and seismic anisotropy in the Mariana and Andean subduction systems. Nature 450, 1222–1225 (2007). https://doi.org/10.1038/nature06429

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature06429

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing