Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Insight
  • Published:

Heparan sulphate proteoglycans fine-tune mammalian physiology

Abstract

Heparan sulphate proteoglycans reside on the plasma membrane of all animal cells studied so far and are a major component of extracellular matrices. Studies of model organisms and human diseases have demonstrated their importance in development and normal physiology. A recurrent theme is the electrostatic interaction of the heparan sulphate chains with protein ligands, which affects metabolism, transport, information transfer, support and regulation in all organ systems. The importance of these interactions is exemplified by phenotypic studies of mice and humans bearing mutations in the core proteins or the biosynthetic enzymes responsible for assembling the heparan sulphate chains.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Assembly of heparan sulphate and formation of binding sites for ligands.
Figure 2: Heparan sulphate proteoglycans have many roles in cell physiology.

References

  1. Bulow, H. E. & Hobert, O. The molecular diversity of glycosaminoglycans shapes animal development. Annu. Rev. Cell Dev. Biol. 22, 375–407 (2006).

    CAS  PubMed  Google Scholar 

  2. Hacker, U., Nybakken, K. & Perrimon, N. Heparan sulphate proteoglycans: the sweet side of development. Nature Rev. Mol. Cell Biol. 6, 530–541 (2005).

    Google Scholar 

  3. Haltiwanger, R. S. & Lowe, J. B. Role of glycosylation in development. Annu. Rev. Biochem. 73, 491–537 (2004).

    CAS  PubMed  Google Scholar 

  4. Esko, J. D. & Selleck, S. B. Order out of chaos: assembly of ligand binding sites in heparan sulfate. Annu. Rev. Biochem. 71, 435–471 (2002).

    CAS  PubMed  Google Scholar 

  5. Dhoot, G. K. et al. Regulation of Wnt signaling and embryo patterning by an extracellular sulfatase. Science 293, 1663–1666 (2001).

    ADS  CAS  Google Scholar 

  6. Morimoto-Tomita, M., Uchimura, K., Werb, Z., Hemmerich, S. & Rosen, S. D. Cloning and characterization of two extracellular heparin-degrading endosulfatases in mice and humans. J. Biol. Chem. 277, 49175–49185 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Vlodavsky, I. et al. Mammalian heparanase: involvement in cancer metastasis, angiogenesis and normal development. Semin. Cancer Biol. 12, 121–129 (2002).

    CAS  PubMed  Google Scholar 

  8. Fedarko, N. S. & Conrad, H. E. A unique heparan sulfate in the nuclei of hepatocytes: structural changes with the growth state of the cells. J.Cell Biol. 102, 587–599 (1986).

    CAS  PubMed  Google Scholar 

  9. Huntington, J. A. Mechanisms of glycosaminoglycan activation of the serpins in hemostasis. J. Thromb. Haemost. 1, 1535–1549 (2003).

    CAS  PubMed  Google Scholar 

  10. Mohammadi, M., Olsen, S. K. & Ibrahimi, O. A. Structural basis for fibroblast growth factor receptor activation. Cytokine Growth Factor Rev. 16, 107–137 (2005).

    CAS  PubMed  Google Scholar 

  11. Forsten-Williams, K., Chua, C. C. & Nugent, M. A. The kinetics of FGF-2 binding to heparan sulfate proteoglycans and MAP kinase signaling. J. Theor. Biol. 233, 483–499 (2005).

    CAS  PubMed  Google Scholar 

  12. Kreuger, J., Spillmann, D., Li, J. P. & Lindahl, U. Interactions between heparan sulfate and proteins: the concept of specificity. J. Cell Biol. 174, 323–327 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Alexopoulou, A. N., Multhaupt, H. A. & Couchman, J. R. Syndecans in wound healing, inflammation and vascular biology. Int. J. Biochem. Cell Biol. 39, 505–528 (2006).

    PubMed  Google Scholar 

  14. Couchman, J. R., Chen, L. G. & Woods, A. Syndecans and cell adhesion. Int. Rev. Cytol. 207, 113–150 (2001).

    CAS  PubMed  Google Scholar 

  15. Kirkpatrick, C. A. et al. The function of a Drosophila glypican does not depend entirely on heparan sulfate modification. Dev. Biol. 300, 570–582 (2006).

    CAS  PubMed  Google Scholar 

  16. Reizes, O. et al. Transgenic expression of syndecan-1 uncovers a physiological control of feeding behavior by syndecan-3. Cell 106, 105–116 (2001).

    CAS  PubMed  Google Scholar 

  17. Strader, A. D., Reizes, O., Woods, S. C., Benoit, S. C. & Seeley, R. J. Mice lacking the syndecan-3 gene are resistant to diet-induced obesity. J. Clin. Invest. 114, 1354–1360 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Zcharia, E. et al. Transgenic expression of mammalian heparanase uncovers physiological functions of heparan sulfate in tissue morphogenesis, vascularization, and feeding behavior. FASEB J. 18, 252–263 (2004).

    CAS  PubMed  Google Scholar 

  19. Mahley, R. W. & Ji, Z. S. Remnant lipoprotein metabolism: key pathways involving cell-surface heparan sulfate proteoglycans and apolipoprotein E. J. Lipid Res. 40, 1–16 (1999).

    ADS  CAS  PubMed  Google Scholar 

  20. MacArthur, J. M. et al. Liver heparan sulfate proteoglycans mediate clearance of triglyceride-rich lipoproteins independently of LDL receptor family members. J. Clin. Invest. 117, 153–164 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Fuki, I. V. et al. The syndecan family of proteoglycans. Novel receptors mediating internalization of atherogenic lipoproteins in vitro. J. Clin. Invest. 100, 1611–1622 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Zeng, B. J., Mortimer, B. C., Martins, I. J., Seydel, U. & Redgrave, T. G. Chylomicron remnant uptake is regulated by the expression and function of heparan sulfate proteoglycan in hepatocytes. J. Lipid Res. 39, 845–860 (1998).

    CAS  PubMed  Google Scholar 

  23. Iozzo, R. V. Basement membrane proteoglycans: from cellar to ceiling. Nature Rev. Mol. Cell Biol. 6, 646–656 (2005).

    CAS  Google Scholar 

  24. Raats, C. J. I., Van den Born, J. & Berden, J. H. M. Glomerular heparan sulfate alterations: mechanisms and relevance for proteinuria. Kidney Int. 57, 385–400 (2000).

    CAS  PubMed  Google Scholar 

  25. Kanwar, Y. S., Linker, A. & Farquhar, M. G. Increased permeability of the glomerular basement membrane to ferritin after removal of glycosaminoglycans (heparan sulfate) by enzyme digestion. J. Cell Biol. 86, 688–693 (1980).

    CAS  PubMed  Google Scholar 

  26. Groffen, A. J. et al. Agrin is a major heparan sulfate proteoglycan in the human glomerular basement membrane. J. Histochem. Cytochem. 46, 19–27 (1998).

    CAS  PubMed  Google Scholar 

  27. Arikawa-Hirasawa, E., Watanabe, H., Takami, H., Hassell, J. R. & Yamada, Y. Perlecan is essential for cartilage and cephalic development. Nature Genet. 23, 354–358 (1999).

    CAS  PubMed  Google Scholar 

  28. Rossi, M. et al. Heparan sulfate chains of perlecan are indispensable in the lens capsule but not in the kidney. EMBO J. 22, 236–245 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Morita, H. et al. Heparan sulfate of perlecan is involved in glomerular filtration. J. Am. Soc. Nephrol. 16, 1703–1710 (2005).

    CAS  PubMed  Google Scholar 

  30. Utriainen, A. et al. Structurally altered basement membranes and hydrocephalus in a type XVIII collagen deficient mouse line. Hum. Mol. Genet. 13, 2089–2099 (2004).

    CAS  PubMed  Google Scholar 

  31. Gautam, M. et al. Defective neuromuscular synaptogenesis in agrin-deficient mutant mice. Cell 85, 525–535 (1996).

    CAS  PubMed  Google Scholar 

  32. Westphal, V. et al. Reduced heparan sulfate accumulation in enterocytes contributes to protein-losing enteropathy in a congenital disorder of glycosylation. Am. J. Pathol. 157, 1917–1925 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Bode, L., Eklund, E. A., Murch, S. & Freeze, H. H. Heparan sulfate depletion amplifies TNF-α-induced protein leakage in an in vitro model of protein-losing enteropathy. Am. J. Physiol. Gastrointest. Liver Physiol. 288, G1015–G1023 (2005).

    CAS  PubMed  Google Scholar 

  34. Donnelly, J. P., Rosenthal, A., Castle, V. P. & Holmes, R. D. Reversal of protein-losing enteropathy with heparin therapy in three patients with univentricular hearts and Fontan palliation. J. Pediatr. 130, 474–478 (1997).

    CAS  PubMed  Google Scholar 

  35. Kronenberg, H. M. Developmental regulation of the growth plate. Nature 423, 332–336 (2003).

    ADS  CAS  Google Scholar 

  36. Koziel, L., Kunath, M., Kelly, O. G. & Vortkamp, A. Ext1-dependent heparan sulfate regulates the range of Ihh signaling during endochondral ossification. Dev. Cell 6, 801–813 (2004).

    CAS  PubMed  Google Scholar 

  37. Lander, A. D., Nie, Q. & Wan, F. Y. Do morphogen gradients arise by diffusion? Dev. Cell 2, 785–796 (2002).

    CAS  PubMed  Google Scholar 

  38. Arikawa-Hirasawa, E. et al. Dyssegmental dysplasia, Silverman–Handmaker type, is caused by functional null mutations of the perlecan gene. Nature Genet. 27, 431–434 (2001).

    CAS  PubMed  Google Scholar 

  39. Stickens, D., Zak, B. M., Rougier, N., Esko, J. D. & Werb, Z. Mice deficient in Ext2 lack heparan sulfate and develop exostoses. Development 132, 5055–5068 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Hovey, R. C., Trott, J. F. & Vonderhaar, B. K. Establishing a framework for the functional mammary gland: from endocrinology to morphology. J. Mammary Gland Biol. Neoplasia 7, 17–38 (2002).

    PubMed  Google Scholar 

  41. Liu, B. Y., McDermott, S. P., Khwaja, S. S. & Alexander, C. M. The transforming activity of Wnt effectors correlates with their ability to induce the accumulation of mammary progenitor cells. Proc. Natl Acad. Sci. USA 101, 4158–4163 (2004).

    ADS  CAS  PubMed  Google Scholar 

  42. Gautam, M., DeChiara, T. M., Glass, D. J., Yancopoulos, G. D. & Sanes, J. R. Distinct phenotypes of mutant mice lacking agrin, MuSK, or rapsyn. Brain Res. Dev. Brain Res. 114, 171–178 (1999).

    CAS  PubMed  Google Scholar 

  43. Jenniskens, G. J. et al. Phenotypic knockout of heparan sulfates in myotubes impairs excitation-induced calcium spiking. FASEB J. 17, NIL606–NIL629 (2003).

    Google Scholar 

  44. Mook-Jung, I. & Gordon, H. Acetylcholine receptor clustering in C2 muscle cells requires chondroitin sulfate. J.Neurobiol. 28, 482–492 (1995).

    CAS  PubMed  Google Scholar 

  45. McDonnell, K. M. & Grow, W. A. Reduced glycosaminoglycan sulfation diminishes the agrin signal transduction pathway. Dev. Neurosci. 26, 1–10 (2004).

    CAS  PubMed  Google Scholar 

  46. Kramer, K. L. & Yost, H. J. Ectodermal syndecan-2 mediates left–right axis formation in migrating mesoderm as a cell-nonautonomous Vg1 cofactor. Dev. Cell 2, 115–124 (2002).

    CAS  PubMed  Google Scholar 

  47. Jakobsson, L. et al. Heparan sulfate in trans potentiates VEGFR-mediated angiogenesis. Dev. Cell 10, 625–634 (2006).

    CAS  PubMed  Google Scholar 

  48. Parish, C. R. The role of heparan sulphate in inflammation. Nature Rev. Immunol. 6, 633–643 (2006).

    MathSciNet  CAS  Google Scholar 

  49. Wang, L., Fuster, M., Sriramarao, P. & Esko, J. D. Endothelial heparan sulfate deficiency impairs L-selectin- and chemokine-mediated neutrophil trafficking during inflammatory responses. Nature Immunol. 6, 902–910 (2005).

    CAS  Google Scholar 

  50. Abrink, M., Grujic, M. & Pejler, G. Serglycin is essential for maturation of mast cell secretory granule. J. Biol. Chem. 279, 40897–40905 (2004).

    PubMed  Google Scholar 

  51. Humphries, D. E. et al. Heparin is essential for the storage of specific granule proteases in mast cells. Nature 400, 769–772 (1999).

    ADS  CAS  PubMed  Google Scholar 

  52. Forsberg, E. et al. Abnormal mast cells in mice deficient in a heparin-synthesizing enzyme. Nature 400, 773–776 (1999).

    ADS  CAS  PubMed  Google Scholar 

  53. Grujic, M. et al. Serglycin-deficient cytotoxic T lymphocytes display defective secretory granule maturation and granzyme B storage. J. Biol. Chem. 280, 33411–33418 (2005).

    CAS  PubMed  Google Scholar 

  54. Zernichow, L. et al. Serglycin is the major secreted proteoglycan in macrophages and has a role in the regulation of macrophage tumor necrosis factor-α secretion in response to lipopolysaccharide. J. Biol. Chem. 281, 26792–26801 (2006).

    CAS  PubMed  Google Scholar 

  55. Sher, I. et al. Targeting perlecan in human keratinocytes reveals novel roles for perlecan in epidermal formation. J. Biol. Chem. 281, 5178–5187 (2006).

    CAS  PubMed  Google Scholar 

  56. Zhou, Z. et al. Impaired angiogenesis, delayed wound healing and retarded tumor growth in perlecan heparan sulfate-deficient mice. Cancer Res. 64, 4699–4702 (2004).

    CAS  PubMed  Google Scholar 

  57. Echtermeyer, F. et al. Delayed wound repair and impaired angiogenesis in mice lacking syndecan-4. J. Clin. Invest. 107, 9–14 (2001).

    Google Scholar 

  58. Stepp, M. A. et al. Defects in keratinocyte activation during wound healing in the syndecan-1-deficient mouse. J. Cell Sci. 115, 4517–4531 (2002).

    CAS  PubMed  Google Scholar 

  59. Kainulainen, V., Wang, H. M., Schick, C. & Bernfield, M. Syndecans, heparan sulfate proteoglycans, maintain the proteolytic balance of acute wound fluids. J. Biol. Chem. 273, 11563–11569 (1998).

    CAS  PubMed  Google Scholar 

  60. Midwood, K. S., Valenick, L. V., Hsia, H. C. & Schwarzbauer, J. E. Coregulation of fibronectin signaling and matrix contraction by tenascin-C and syndecan-4. Mol. Biol. Cell 15, 5670–5677 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Cool, S. M. & Nurcombe, V. Heparan sulfate regulation of progenitor cell fate. J. Cell Biochem. 99, 1040–1051 (2006).

    CAS  PubMed  Google Scholar 

  62. Cornelison, D. D. et al. Essential and separable roles for syndecan-3 and syndecan-4 in skeletal muscle development and regeneration. Genes Dev. 18, 2231–2236 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Zcharia, E. et al. Heparanase regulates murine hair growth. Am. J. Pathol. 166, 999–1008 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. De Agostini, A., Watkins, S. C., Slayter, H. S., Youssoufian, H. & Rosenberg, R. D. Localization of anticoagulantly active heparan sulfate proteoglycans in vascular endothelium: antithrombin binding on cultured endothelial cells and perfused rat aorta. J. Cell Biol. 111, 1293–1304 (1990).

    CAS  PubMed  Google Scholar 

  65. Marcum, J. A., Fritze, L., Galli, S. J., Karp, G. & Rosenberg, R. D. Microvascular heparin-like species with anticoagulant activity. Am. J. Physiol. 245, H725–H733 (1983).

    CAS  PubMed  Google Scholar 

  66. HajMohammadi, S. et al. Normal levels of anticoagulant heparan sulfate are not essential for normal hemostasis. J. Clin. Invest. 111, 989–999 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Shworak, N. W., HajMohammadi, S., De Agostini, A. I. & Rosenberg, R. D. Mice deficient in heparan sulfate 3-O-sulfotransferase-1: normal hemostasis with unexpected perinatal phenotypes. Glycoconj. J. 19, 355–361 (2002).

    CAS  PubMed  Google Scholar 

  68. Hasan, S. et al. Coordinate expression of anticoagulant heparan sulfate proteoglycans and serine protease inhibitors in the rat ovary: a potent system of proteolysis control. Biol.Reprod. 66, 144–158 (2002).

    CAS  PubMed  Google Scholar 

  69. Hosseini, G., Liu, J. & De Agostini, A. I. Characterization and hormonal modulation of anticoagulant heparan sulfate proteoglycans synthesized by rat ovarian granulosa cells. J. Biol. Chem. 271, 22090–22099 (1996).

    CAS  PubMed  Google Scholar 

  70. Fuster, M. M. & Esko, J. D. The sweet and sour of cancer: glycans as novel therapeutic targets. Nature Rev. Cancer 5, 526–542 (2005).

    CAS  Google Scholar 

  71. van Horssen, J., Wesseling, P., van den Heuvel, L. P., de Waal, R. M. & Verbeek, M. M. Heparan sulphate proteoglycans in Alzheimer's disease and amyloid-related disorders. Lancet Neurol. 2, 482–492 (2003).

    CAS  PubMed  Google Scholar 

  72. Li, J. P. et al. In vivo fragmentation of heparan sulfate by heparanase overexpression renders mice resistant to amyloid protein A amyloidosis. Proc. Natl Acad. Sci. USA 102, 6473–6477 (2005).

    ADS  CAS  PubMed  Google Scholar 

  73. Li, Q., Park, P. W., Wilson, C. L. & Parks, W. C. Matrilysin shedding of syndecan-1 regulates chemokine mobilization and transepithelial efflux of neutrophils in acute lung injury. Cell 111, 635–646 (2002).

    CAS  PubMed  Google Scholar 

  74. Park, P. W., Pier, G. B., Hinkes, M. T. & Bernfield, M. Exploitation of syndecan-1 shedding by Pseudomonas aeruginosa enhances virulence. Nature 411, 98–102 (2001).

    ADS  CAS  PubMed  Google Scholar 

  75. Haynes, A. et al. Syndecan 1 shedding contributes to Pseudomonas aeruginosa sepsis. Infect. Immun. 73, 7914–7921 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Xu, J., Park, P. W., Kheradmand, F. & Corry, D. B. Endogenous attenuation of allergic lung inflammation by syndecan-1. J. Immunol. 174, 5758–5765 (2005).

    CAS  PubMed  Google Scholar 

  77. Dinglasan, R. R. & Jacobs-Lorena, M. Insight into a conserved lifestyle: protein–carbohydrate adhesion strategies of vector-borne pathogens. Infect. Immun. 73, 7797–7807 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Bishop, J. R. & Esko, J. D. The elusive role of heparan sulfate in Toxoplasma gondii infection. Mol. Biochem. Parasitol. 139, 267–269 (2005).

    CAS  PubMed  Google Scholar 

  79. Bishop, J. R., Crawford, B. E. & Esko, J. D. Cell surface heparan sulfate promotes replication of Toxoplasma gondii. Infect. Immun. 73, 5395–5401 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Cano-Gauci, D. F. et al. Glypican-3-deficient mice exhibit developmental overgrowth and some of the abnormalities typical of Simpson-Golabi-Behmel syndrome. J. Cell Biol. 146, 255–264 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Chiao, E. et al. Overgrowth of a mouse model of the Simpson–Golabi–Behmel syndrome is independent of IGF signaling. Dev. Biol. 243, 185–206 (2002).

    CAS  PubMed  Google Scholar 

  82. Kaksonen, M. et al. Syndecan-3-deficient mice exhibit enhanced LTP and impaired hippocampus-dependent memory. Mol. Cell. Neurosci. 21, 158–172 (2002).

    CAS  PubMed  Google Scholar 

  83. Grobe, K. et al. Cerebral hypoplasia and craniofacial defects in mice lacking heparan sulfate Ndst1 gene function. Development 132, 3777–3786 (2005).

    CAS  PubMed  Google Scholar 

  84. Ringvall, M. et al. Defective heparan sulfate biosynthesis and neonatal lethality in mice lacking N-deacetylase/N-sulfotransferase-1. J. Biol. Chem. 275, 25926–25930 (2000).

    CAS  PubMed  Google Scholar 

  85. Pan, Y., Woodbury, A., Esko, J. D., Grobe, K. & Zhang, X. Heparan sulfate biosynthetic gene Ndst1 is required for FGF signaling in early lens development. Development 133, 4933–4944 (2006).

    CAS  PubMed  Google Scholar 

  86. Bullock, S. L., Fletcher, J. M., Beddington, R. S. & Wilson, V. A. Renal agenesis in mice homozygous for a gene trap mutation in the gene encoding heparan sulfate 2-sulfotransferase. Genes Dev. 12, 1894–1906 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Li, J. P. et al. Targeted disruption of a murine glucuronyl C5-epimerase gene results in heparan sulfate lacking L-iduronic acid and in neonatal lethality. J. Biol. Chem. 278, 28363–28366 (2003).

    CAS  PubMed  Google Scholar 

  88. Serpinskaya, A. S., Feng, G., Sanes, J. R. & Craig, A. M. Synapse formation by hippocampal neurons from agrin-deficient mice. Dev. Biol. 205, 65–78 (1999).

    CAS  PubMed  Google Scholar 

  89. Arikawa-Hirasawa, E., Rossi, S. G., Rotundo, R. L. & Yamada, Y. Absence of acetylcholinesterase at the neuromuscular junctions of perlecan-null mice. Nature Neurosci. 5, 119–123 (2002).

    CAS  PubMed  Google Scholar 

  90. Viviano, B. L. et al. Altered hematopoiesis in glypican-3-deficient mice results in decreased osteoclast differentiation and a delay in endochondral ossification. Dev. Biol. 282, 152–162 (2005).

    CAS  PubMed  Google Scholar 

  91. Paine-Saunders, S., Viviano, B. L., Zupicich, J., Skarnes, W. C. & Saunders, S. glypican-3 controls cellular responses to Bmp4 in limb patterning and skeletal development. Dev. Biol. 225, 179–187 (2000).

    CAS  PubMed  Google Scholar 

  92. Pallerla, S. R., Pan, Y., Zhang, X., Esko, J. D. & Grobe, K. Heparan sulfate Ndst1 gene function variably regulates multiple signaling pathways during mouse development. Dev. Dyn. 236, 556–563 (2007).

    CAS  PubMed  Google Scholar 

  93. Kram, V. et al. Heparanase is expressed in osteoblastic cells and stimulates bone formation and bone mass. J. Cell Physiol. 207, 784–792 (2006).

    CAS  PubMed  Google Scholar 

  94. Zcharia, E. et al. Heparanase accelerates wound angiogenesis and wound healing in mouse and rat models. FASEB J. 19, 211–221 (2005).

    CAS  PubMed  Google Scholar 

  95. Li, Q. & Olsen, B. R. Increased angiogenic response in aortic explants of collagen XVIII/endostatin-null mice. Am. J. Pathol. 165, 415–424 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Moulton, K. S. et al. Loss of collagen XVIII enhances neovascularization and vascular permeability in atherosclerosis. Circulation 110, 1330–1336 (2004).

    CAS  PubMed  Google Scholar 

  97. Gotte, M. et al. Role of syndecan-1 in leukocyte–endothelial interactions in the ocular vasculature. Invest. Ophthalmol. Vis. Sci. 43, 1135–1141 (2002).

    PubMed  Google Scholar 

  98. Ishiguro, K. et al. Syndecan-4 deficiency impairs the fetal vessels in the placental labyrinth. Dev. Dyn. 219, 539–544 (2000).

    CAS  PubMed  Google Scholar 

  99. Fan, G. et al. Targeted disruption of NDST-1 gene leads to pulmonary hypoplasia and neonatal respiratory distress in mice. FEBS Lett. 467, 7–11 (2000).

    ADS  CAS  PubMed  Google Scholar 

  100. Ishiguro, K. et al. Syndecan-4 deficiency increases susceptibility to κ-carrageenan-induced renal damage. Lab. Invest. 81, 509–516 (2001).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank S. Olson for careful reading of this manuscript and for many helpful suggestions. M.S. and J.D.E. are affiliated with the Biomedical Sciences Graduate Program at University of California, San Diego. This work was supported by grants (J.D.E.) and a training grant (M.S.) from the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph R. Bishop.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bishop, J., Schuksz, M. & Esko, J. Heparan sulphate proteoglycans fine-tune mammalian physiology. Nature 446, 1030–1037 (2007). https://doi.org/10.1038/nature05817

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature05817

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing