Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Mechanisms of sensory transduction in the skin

Abstract

Sensory neurons innervating the skin encode the familiar sensations of temperature, touch and pain. An explosion of progress has revealed unanticipated cellular and molecular complexity in these senses. It is now clear that perception of a single stimulus, such as heat, requires several transduction mechanisms. Conversely, a given protein may contribute to multiple senses, such as heat and touch. Recent studies have also led to the surprising insight that skin cells might transduce temperature and touch. To break the code underlying somatosensation, we must therefore understand how the skin's sensory functions are divided among signalling molecules and cell types.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Diversity of somatosensenory neurons in the skin.
Figure 2: Gating models of mechanotransduction channels.
Figure 3: Sensory transduction by epithelial cells.

Similar content being viewed by others

References

  1. Gardner, E. P., Martin, J. H. & Jessell, T. M. in Principles of Neural Science (eds Kandel, E. R., Schwartz, J. H. & Jessell, T. M.) 430–449 (Oxford Univ. Press, New York, 2000).

    Google Scholar 

  2. Caterina, M. J. & Julius, D. The vanilloid receptor: a molecular gateway to the pain pathway. Annu. Rev. Neurosci. 24, 487–517 (2001).

    Article  CAS  PubMed  Google Scholar 

  3. Ramsey, I. S., Delling, M. & Clapham, D. E. An introduction to TRP channels. Annu. Rev. Physiol. 68, 619–647 (2006).

    Article  CAS  PubMed  Google Scholar 

  4. Dhaka, A., Viswanath, V. & Patapoutian, A. TRP ion channels and temperature sensation. Annu. Rev. Neurosci. 29, 135–161 (2006).

    Article  CAS  PubMed  Google Scholar 

  5. Lee, H. & Caterina, M. J. TRPV channels as thermosensory receptors in epithelial cells. Pflügers Arch. 451, 160–167 (2005).

    Article  CAS  PubMed  Google Scholar 

  6. Zimmermann, K. et al. The TRPV1/2/3 activator 2-aminoethoxydiphenyl borate sensitizes native nociceptive neurons to heat in wildtype but not TRPV1 deficient mice. Neuroscience 135, 1277–1284 (2005).

    Article  CAS  PubMed  Google Scholar 

  7. Woodbury, C. J. et al. Nociceptors lacking TRPV1 and TRPV2 have normal heat responses. J. Neurosci. 24, 6410–6415 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Szallasi, A., Cruz, F. & Geppetti, P. TRPV1: a therapeutic target for novel analgesic drugs? Trends Mol. Med. 12, 545–554 (2006).

    Article  CAS  PubMed  Google Scholar 

  9. Togashi, K. et al. TRPM2 activation by cyclic ADP-ribose at body temperature is involved in insulin secretion. EMBO J. 25, 1804–1815 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Peier, A. M. et al. A TRP channel that senses cold stimuli and menthol. Cell 108, 705–715 (2002).

    Article  CAS  PubMed  Google Scholar 

  11. McKemy, D. D., Neuhausser, W. M. & Julius, D. Identification of a cold receptor reveals a general role for TRP channels in thermosensation. Nature 416, 52–58 (2002).

    Article  ADS  CAS  PubMed  Google Scholar 

  12. Story, G. M. et al. ANKTM1, a TRP-like channel expressed in nociceptive neurons, is activated by cold temperatures. Cell 112, 819–829 (2003).

    Article  CAS  PubMed  Google Scholar 

  13. Bautista, D. M. et al. Pungent products from garlic activate the sensory ion channel TRPA1. Proc. Natl Acad. Sci. USA 102, 12248–12252 (2005).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  14. Jordt, S. E. et al. Mustard oils and cannabinoids excite sensory nerve fibres through the TRP channel ANKTM1. Nature 427, 260–265 (2004).

    Article  ADS  CAS  PubMed  Google Scholar 

  15. Bandell, M. et al. Noxious cold ion channel TRPA1 is activated by pungent compounds and bradykinin. Neuron 41, 849–857 (2004).

    Article  CAS  PubMed  Google Scholar 

  16. Reid, G. ThermoTRP channels and cold sensing: what are they really up to? Pflügers Arch. 451, 250–263 (2005).

    Article  CAS  PubMed  Google Scholar 

  17. Kwan, K. Y. et al. TRPA1 contributes to cold, mechanical, and chemical nociception but is not essential for hair-cell transduction. Neuron 50, 277–289 (2006).

    Article  CAS  PubMed  Google Scholar 

  18. Obata, K. et al. TRPA1 induced in sensory neurons contributes to cold hyperalgesia after inflammation and nerve injury. J. Clin. Invest. 115, 2393–2401 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Nagata, K., Duggan, A., Kumar, G. & Garcia-Anoveros, J. Nociceptor and hair cell transducer properties of TRPA1, a channel for pain and hearing. J. Neurosci. 25, 4052–4061 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Bautista, D. M. et al. TRPA1 mediates the inflammatory actions of environmental irritants and proalgesic agents. Cell 124, 1269–1282 (2006).

    Article  CAS  PubMed  Google Scholar 

  21. Viana, F., de la Pena, E. & Belmonte, C. Specificity of cold thermotransduction is determined by differential ionic channel expression. Nature Neurosci. 5, 254–260 (2002).

    Article  CAS  PubMed  Google Scholar 

  22. Olausson, H. et al. Unmyelinated tactile afferents signal touch and project to insular cortex. Nature Neurosci. 5, 900–904 (2002).

    Article  CAS  PubMed  Google Scholar 

  23. Kung, C. A possible unifying principle for mechanosensation. Nature 436, 647–654 (2005).

    Article  ADS  CAS  PubMed  Google Scholar 

  24. Jiang, Y. et al. Crystal structure and mechanism of a calcium-gated potassium channel. Nature 417, 515–522 (2002).

    Article  ADS  CAS  PubMed  Google Scholar 

  25. LeMasurier, M. & Gillespie, P. G. Hair-cell mechanotransduction and cochlear amplification. Neuron 48, 403–415 (2005).

    Article  CAS  PubMed  Google Scholar 

  26. Syntichaki, P. & Tavernarakis, N. Genetic models of mechanotransduction: the nematode Caenorhabditis elegans. Physiol. Rev. 84, 1097–1153 (2004).

    Article  CAS  PubMed  Google Scholar 

  27. Kahn-Kirby, A. H. et al. Specific polyunsaturated fatty acids drive TRPV-dependent sensory signaling in vivo. Cell 119, 889–900 (2004).

    Article  CAS  PubMed  Google Scholar 

  28. Corey, D. P. & Hudspeth, A. J. Response latency of vertebrate hair cells. Biophys. J. 26, 499–506 (1979).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. O'Hagan, R., Chalfie, M. & Goodman, M. B. The MEC-4 DEG/ENaC channel of Caenorhabditis elegans touch receptor neurons transduces mechanical signals. Nature Neurosci. 8, 43–50 (2005).

    Article  CAS  PubMed  Google Scholar 

  30. Walker, R. G., Willingham, A. T. & Zuker, C. S. A Drosophila mechanosensory transduction channel. Science 287, 2229–2234 (2000).

    Article  ADS  CAS  PubMed  Google Scholar 

  31. Sabatini, B. L. & Regehr, W. G. Timing of neurotransmission at fast synapses in the mammalian brain. Nature 384, 170–172 (1996).

    Article  ADS  CAS  PubMed  Google Scholar 

  32. Suzuki, H. et al. In vivo imaging of C. elegans mechanosensory neurons demonstrates a specific role for the MEC-4 channel in the process of gentle touch sensation. Neuron 39, 1005–1017 (2003).

    Article  CAS  PubMed  Google Scholar 

  33. Wetzel, C. et al. A stomatin-domain protein essential for touch sensation in the mouse. Nature 445, 206–209 (2007).

    Article  ADS  CAS  PubMed  Google Scholar 

  34. Lumpkin, E. A. & Bautista, D. M. Feeling the pressure in mammalian somatosensation. Curr. Opin. Neurobiol. 15, 382–388 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Mogil, J. S. et al. Transgenic expression of a dominant-negative ASIC3 subunit leads to increased sensitivity to mechanical and inflammatory stimuli. J. Neurosci. 25, 9893–9901 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Li, W., Feng, Z., Sternberg, P. W. & Xu, X. Z. A C. elegans stretch receptor neuron revealed by a mechanosensitive TRP channel homologue. Nature 440, 684–687 (2006).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  37. Eberl, D. F., Hardy, R. W. & Kernan, M. J. Genetically similar transduction mechanisms for touch and hearing in Drosophila. J. Neurosci. 20, 5981–5988 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Gopfert, M. C., Albert, J. T., Nadrowski, B. & Kamikouchi, A. Specification of auditory sensitivity by Drosophila TRP channels. Nature Neurosci. 9, 999–1000 (2006).

    Article  PubMed  CAS  Google Scholar 

  39. Sidi, S., Friedrich, R. W. & Nicolson, T. NompC TRP channel required for vertebrate sensory hair cell mechanotransduction. Science 301, 96–99 (2003).

    Article  ADS  CAS  PubMed  Google Scholar 

  40. Shin, J. B. et al. Xenopus TRPN1 (NOMPC) localizes to microtubule-based cilia in epithelial cells, including inner-ear hair cells. Proc. Natl Acad. Sci. USA 102, 12572–12577 (2005).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  41. Corey, D. P. et al. TRPA1 is a candidate for the mechanosensitive transduction channel of vertebrate hair cells. Nature 432, 723–730 (2004).

    Article  ADS  CAS  PubMed  Google Scholar 

  42. Tracey, W. D., Wilson, R. I., Laurent, G. & Benzer, S. painless, a Drosophila gene essential for nociception. Cell 113, 261–273 (2003).

    Article  CAS  PubMed  Google Scholar 

  43. Kahn-Kirby, A. H. & Bargmann, C. I. TRP channels in C. elegans. Annu. Rev. Physiol. 68, 719–736 (2006).

    Article  CAS  PubMed  Google Scholar 

  44. Gong, Z. et al. Two interdependent TRPV channel subunits, Inactive and Nanchung, mediate hearing in Drosophila. J. Neurosci. 24, 9059–9066 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kim, J. et al. A TRPV family ion channel required for hearing in Drosophila. Nature 424, 81–84 (2003).

    Article  ADS  CAS  PubMed  Google Scholar 

  46. Liedtke, W. TRPV4 as osmosensor: a transgenic approach. Pflügers Arch. 451, 176–180 (2005).

    Article  CAS  PubMed  Google Scholar 

  47. Liedtke, W. et al. Vanilloid receptor-related osmotically activated channel (VR-OAC), a candidate vertebrate osmoreceptor. Cell 103, 525–535 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Strotmann, R., Harteneck, C., Nunnenmacher, K., Schultz, G. & Plant, T. D. OTRPC4, a nonselective cation channel that confers sensitivity to extracellular osmolarity. Nature Cell Biol. 2, 695–702 (2000).

    Article  CAS  PubMed  Google Scholar 

  49. Vriens, J. et al. Cell swelling, heat, and chemical agonists use distinct pathways for the activation of the cation channel TRPV4. Proc. Natl Acad. Sci. USA 101, 396–401 (2004).

    Article  ADS  CAS  PubMed  Google Scholar 

  50. Liedtke, W. & Friedman, J. M. Abnormal osmotic regulation in trpv4−/− mice. Proc. Natl Acad. Sci. USA 100, 13698–13703 (2003).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  51. Suzuki, M., Mizuno, A., Kodaira, K. & Imai, M. Impaired pressure sensation in mice lacking TRPV4. J. Biol. Chem. 278, 22664–22668 (2003).

    Article  CAS  PubMed  Google Scholar 

  52. Alessandri-Haber, N., Joseph, E., Dina, O. A., Liedtke, W. & Levine, J. D. TRPV4 mediates pain-related behavior induced by mild hypertonic stimuli in the presence of inflammatory mediator. Pain 118, 70–79 (2005).

    Article  CAS  PubMed  Google Scholar 

  53. Birder, L. A. et al. Altered urinary bladder function in mice lacking the vanilloid receptor TRPV1. Nature Neurosci. 5, 856–860 (2002).

    Article  CAS  PubMed  Google Scholar 

  54. Sharif Naeini, R., Witty, M. F., Seguela, P. & Bourque, C. W. An N-terminal variant of Trpv1 channel is required for osmosensory transduction. Nature Neurosci. 9, 93–98 (2006).

    Article  PubMed  CAS  Google Scholar 

  55. Muraki, K. et al. TRPV2 is a component of osmotically sensitive cation channels in murine aortic myocytes. Circ. Res. 93, 829–838 (2003).

    Article  CAS  PubMed  Google Scholar 

  56. Maroto, R. et al. TRPC1 forms the stretch-activated cation channel in vertebrate cells. Nature Cell Biol. 7, 179–185 (2005).

    Article  CAS  PubMed  Google Scholar 

  57. Alloui, A. et al. TREK-1, a K+ channel involved in polymodal pain perception. EMBO J. 25, 2368–2376 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Roper, S. D. Signaling in the chemosensory systems: cell communication in taste buds. Cell Mol. Life Sci. 63, 1494–1500 (2006).

    Article  CAS  Google Scholar 

  59. Zylka, M. J., Rice, F. L. & Anderson, D. J. Topographically distinct epidermal nociceptive circuits revealed by axonal tracers targeted to Mrgprd. Neuron 45, 17–25 (2005).

    Article  CAS  PubMed  Google Scholar 

  60. Snider, W. D. & McMahon, S. B. Tackling pain at the source: new ideas about nociceptors. Neuron 20, 629–632 (1998).

    Article  CAS  PubMed  Google Scholar 

  61. Hilliges, M., Wang, L. & Johansson, O. Ultrastructural evidence for nerve fibers within all vital layers of the human epidermis. J. Invest. Dermatol. 104, 134–137 (1995).

    Article  CAS  PubMed  Google Scholar 

  62. Chateau, Y. & Misery, L. Connections between nerve endings and epidermal cells: are they synapses? Exp. Dermatol. 13, 2–4 (2004).

    Article  PubMed  Google Scholar 

  63. Shu, X. Q. & Mendell, L. M. Neurotrophins and hyperalgesia. Proc. Natl Acad. Sci. USA 96, 7693–7696 (1999).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  64. Khodorova, A., Fareed, M. U., Gokin, A., Strichartz, G. R. & Davar, G. Local injection of a selective endothelin-B receptor agonist inhibits endothelin-1-induced pain-like behavior and excitation of nociceptors in a naloxone-sensitive manner. J. Neurosci. 22, 7788–7796 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Xu, H., Delling, M., Jun, J. C. & Clapham, D. E. Oregano, thyme and clove-derived flavors and skin sensitizers activate specific TRP channels. Nature Neurosci. 9, 628–635 (2006).

    Article  CAS  PubMed  Google Scholar 

  66. Koizumi, S. et al. Ca2+ waves in keratinocytes are transmitted to sensory neurons: the involvement of extracellular ATP and P2Y2 receptor activation. Biochem. J. 380, 329–338 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Khodorova, A. et al. Endothelin-B receptor activation triggers an endogenous analgesic cascade at sites of peripheral injury. Nature Med. 9, 1055–1061 (2003).

    Article  CAS  PubMed  Google Scholar 

  68. Moqrich, A. et al. Impaired thermosensation in mice lacking TRPV3, a heat and camphor sensor in the skin. Science 307, 1468–1472 (2005).

    Article  ADS  CAS  PubMed  Google Scholar 

  69. Biro, T. et al. Hair cycle control by vanilloid receptor-1 (TRPV1): evidence from TRPV1 knockout mice. J. Invest. Dermatol. 126, 1909–1912 (2006).

    Article  CAS  PubMed  Google Scholar 

  70. Asakawa, M. et al. Association of a mutation in TRPV3 with defective hair growth in rodents. J. Invest. Dermatol. 126, 2664–2672 (2006).

    Article  CAS  PubMed  Google Scholar 

  71. Halata, Z., Grim, M. & Bauman, K. I. Friedrich Sigmund Merkel and his 'Merkel cell', morphology, development, and physiology: review and new results. Anat. Rec. 271A, 225–239 (2003).

    Article  Google Scholar 

  72. Sekerkova, G. et al. Espins are multifunctional actin cytoskeletal regulatory proteins in the microvilli of chemosensory and mechanosensory cells. J. Neurosci. 24, 5445–5456 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Ben-Arie, N. et al. Functional conservation of atonal and Math1 in the CNS and PNS. Development 127, 1039–1048 (2000).

    Article  CAS  PubMed  Google Scholar 

  74. Wallis, D. et al. The zinc finger transcription factor Gfi1, implicated in lymphomagenesis, is required for inner ear hair cell differentiation and survival. Development 130, 221–232 (2003).

    Article  CAS  PubMed  Google Scholar 

  75. Cahusac, P. M. & Senok, S. S. Metabotropic glutamate receptor antagonists selectively enhance responses of slowly adapting type I mechanoreceptors. Synapse 59, 235–242 (2006).

    Article  CAS  PubMed  Google Scholar 

  76. Cahusac, P. M., Senok, S. S., Hitchcock, I. S., Genever, P. G. & Baumann, K. I. Are unconventional NMDA receptors involved in slowly adapting type I mechanoreceptor responses? Neuroscience 133, 763–773 (2005).

    Article  CAS  PubMed  Google Scholar 

  77. Fagan, B. M. & Cahusac, P. M. Evidence for glutamate receptor mediated transmission at mechanoreceptors in the skin. Neuroreport 12, 341–347 (2001).

    Article  CAS  PubMed  Google Scholar 

  78. Haeberle, H. et al. Molecular profiling reveals synaptic release machinery in Merkel cells. Proc. Natl Acad. Sci. USA 101, 14503–14508 (2004).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  79. Tachibana, T. & Nawa, T. Immunohistochemical reactions of receptors to met-enkephalin, VIP, substance P, and CGRP located on Merkel cells in the rat sinus hair follicle. Arch. Histol. Cytol. 68, 383–391 (2005).

    Article  CAS  PubMed  Google Scholar 

  80. Jordt, S. E. & Julius, D. Molecular basis for species-specific sensitivity to 'hot' chili peppers. Cell 108, 421–430 (2002).

    Article  CAS  PubMed  Google Scholar 

  81. Bandell, M. et al. High-throughput random mutagenesis screen reveals TRPM8 residues specifically required for activation by menthol. Nature Neurosci. 9, 493–500 (2006).

    Article  CAS  PubMed  Google Scholar 

  82. Voets, T. et al. The principle of temperature-dependent gating in cold- and heat-sensitive TRP channels. Nature 430, 748–54 (2004).

    Article  ADS  CAS  PubMed  Google Scholar 

  83. Feske, S. et al. A mutation in Orai1 causes immune deficiency by abrogating CRAC channel function. Nature 441, 179–185 (2006).

    Article  ADS  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Research in the authors′ laboratories is supported by the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ellen A. Lumpkin or Michael J. Caterina.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lumpkin, E., Caterina, M. Mechanisms of sensory transduction in the skin. Nature 445, 858–865 (2007). https://doi.org/10.1038/nature05662

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature05662

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing