Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Thermal radiation scanning tunnelling microscopy

Abstract

In standard near-field scanning optical microscopy (NSOM), a subwavelength probe acts as an optical ‘stethoscope’ to map the near field produced at the sample surface by external illumination1. This technique has been applied using visible1,2, infrared3, terahertz4 and gigahertz5,6 radiation to illuminate the sample, providing a resolution well beyond the diffraction limit. NSOM is well suited to study surface waves such as surface plasmons7 or surface-phonon polaritons8. Using an aperture NSOM with visible laser illumination, a near-field interference pattern around a corral structure has been observed9, whose features were similar to the scanning tunnelling microscope image of the electronic waves in a quantum corral10. Here we describe an infrared NSOM that operates without any external illumination: it is a near-field analogue of a night-vision camera, making use of the thermal infrared evanescent fields emitted by the surface, and behaves as an optical scanning tunnelling microscope11,12. We therefore term this instrument a ‘thermal radiation scanning tunnelling microscope’ (TRSTM). We show the first TRSTM images of thermally excited surface plasmons, and demonstrate spatial coherence effects in near-field thermal emission.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Detection of the thermal radiation scanning tunnelling microscope (TRSTM) signal.
Figure 2: Analysing the origin of the TRSTM signal.
Figure 3: EM-LDOS measurement by TRSTM.
Figure 4: EM-LDOS images.

Similar content being viewed by others

References

  1. Pohl, D. W., Denk, W. & Lanz, M. Optical stethoscopy: Image recording with resolution λ/20. Appl. Phys. Lett. 44, 651–653 (1984)

    Article  ADS  Google Scholar 

  2. Zenhausern, F., Martin, Y. & Wickramasinghe, H. K. Scanning apertureless microscopy: optical imaging at 10 Angstrom resolution. Science 269, 1083–1085 (1995)

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Lahrech, A., Bachelot, R., Gleyzes, P. & Boccara, A. C. Infrared-reflection-mode near-field microscopy using an apertureless probe with a resolution of λ/600. Opt. Lett. 21, 1315–1317 (1996)

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Chen, H-T., Kersting, R. & Cho, G. C. Terahertz imaging with nanometer resolution. Appl. Phys. Lett. 83, 309–311 (2003)

    CAS  Google Scholar 

  5. Knoll, B., Keilmann, F., Kramer, A. & Guckenberger, R. Contrast of microwave near-field microscopy. Appl. Phys. Lett. 70, 2667–2669 (1997)

    Article  ADS  CAS  Google Scholar 

  6. Ash, E. A. & Nicholls, G. Super-resolution aperture scanning microscope. Nature 237, 510–512 (1972)

    Article  ADS  CAS  PubMed  Google Scholar 

  7. Marti, O. et al. Near-field optical measurement of the surface plasmon field. Opt. Commun. 96, 225–228 (1993)

    Article  ADS  Google Scholar 

  8. Hillenbrand, R., Taubner, T. & Keilmann, F. Phonon-enhanced light–matter interaction at the nanometre scale. Nature 418, 159–161 (2002)

    Article  ADS  CAS  PubMed  Google Scholar 

  9. Chicanne, C. et al. Imaging the local density of states of optical corrals. Phys. Rev. Lett. 88, 097402 (2002)

    Article  ADS  CAS  PubMed  Google Scholar 

  10. Crommie, M. F., Lutz, C. P. & Eigler, D. M. Confinement of electrons to quantum corrals on a metal surface. Science 262, 218–220 (1993)

    Article  ADS  CAS  PubMed  Google Scholar 

  11. Carminati, R. & Saenz, J. J. Scattering theory of Bardeen’s formalism for tunneling: New approach to near-field microscopy. Phys. Rev. Lett. 84, 5156–5159 (2000)

    Article  ADS  CAS  PubMed  Google Scholar 

  12. Joulain, K., Carminati, R., Mulet, J-P. & Greffet, J-J. Definition and measurement of the local density of electromagnetic states close to an interface. Phys. Rev. B 68, 245405 (2003)

    Article  ADS  Google Scholar 

  13. De Wilde, Y., Formanek, F. & Aigouy, L. Apertureless near-field scanning optical microscope based on a quartz tuning fork. Rev. Sci. Instrum. 74, 3889–3891 (2003)

    Article  ADS  CAS  Google Scholar 

  14. Porto, J. A., Carminati, R. & Greffet, J-J. Theory of electromagnetic field imaging and spectroscopy in scanning near-field optical microscopy. J. Appl. Phys. 88, 4845–4850 (2000)

    Article  ADS  CAS  Google Scholar 

  15. Carminati, R. & Greffet, J-J. Near-field effects in spatial coherence of thermal sources. Phys. Rev. Lett. 82, 1660–1663 (1999)

    Article  ADS  CAS  Google Scholar 

  16. Greffet, J-J. et al. Coherent emission of light by thermal sources. Nature 416, 61–64 (2002)

    Article  ADS  CAS  PubMed  Google Scholar 

  17. Kreiter, M. et al. Thermally induced emission of light from a metallic diffraction grating, mediated by surface plasmons. Opt. Commun. 168, 117–122 (1999)

    Article  ADS  CAS  Google Scholar 

  18. Shchegrov, A. V., Joulain, K., Carminati, R. & Greffet, J-J. Near-field spectral effects due to electromagnetic surface excitations. Phys. Rev. Lett. 85, 1548–1551 (2000)

    Article  ADS  CAS  PubMed  Google Scholar 

  19. Hecht, B., Bielefeldt, H., Inouye, Y., Pohl, D. W. & Novotny, L. Facts and artifacts in near-field optical microscopy. J. Appl. Phys. 81, 2492–2498 (1997)

    Article  ADS  CAS  Google Scholar 

  20. Tersoff, J. & Hamann, D. R. Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985)

    Article  ADS  CAS  Google Scholar 

  21. Agarwal, G. S. Quantum electrodynamics in the presence of dielectrics and conductors. IV General theory for spontaneous emission in finite geometries. Phys. Rev. A 12, 1475–1497 (1975)

    Article  ADS  Google Scholar 

  22. Gralak, B., de Dood, M. J. A., Tayeb, G., Enoch, S. & Maystre, D. Theoretical study of photonic band gaps in woodpile crystals. Phys. Rev. E 67, 066601 (2003)

    Article  ADS  Google Scholar 

  23. Knoll, B. & Keilmann, F. Enhanced dielectric contrast in scattering-type scanning near-field optical microscopy. Opt. Commun. 182, 321–328 (2000)

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank A.C. Boccara for comments and L. Aigouy for AFM measurements on the samples. This work was supported by the Ministère délégué à la Recherche (programme ACI Jeunes chercheurs) and the Centre National de la Recherche Scientifique.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yannick De Wilde.

Ethics declarations

Competing interests

Reprints and permissions information is available at www.nature.com/reprints. The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

De Wilde, Y., Formanek, F., Carminati, R. et al. Thermal radiation scanning tunnelling microscopy. Nature 444, 740–743 (2006). https://doi.org/10.1038/nature05265

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature05265

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing