Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Long-term motor cortex plasticity induced by an electronic neural implant

Abstract

It has been proposed that the efficacy of neuronal connections is strengthened when there is a persistent causal relationship between presynaptic and postsynaptic activity. Such activity-dependent plasticity may underlie the reorganization of cortical representations during learning, although direct in vivo evidence is lacking. Here we show that stable reorganization of motor output can be induced by an artificial connection between two sites in the motor cortex of freely behaving primates. An autonomously operating electronic implant used action potentials recorded on one electrode to trigger electrical stimuli delivered at another location. Over one or more days of continuous operation, the output evoked from the recording site shifted to resemble the output from the corresponding stimulation site, in a manner consistent with the potentiation of synaptic connections between the artificially synchronized populations of neurons. Changes persisted in some cases for more than one week, whereas the output from sites not incorporated in the connection was unaffected. This method for inducing functional reorganization in vivo by using physiologically derived stimulus trains may have practical application in neurorehabilitation after injury.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Conditioning protocol and experimental design.
Figure 2: Reorganization of motor output after conditioning.
Figure 3: Summary of conditioning results.
Figure 4: Dependence of conditioning effects on delay between spikes and stimuli.
Figure 5: Suggested mechanism for the conditioning effect documented in Fig. 2 .

Similar content being viewed by others

References

  1. Buonomano, D. V. & Merzenich, M. M. Cortical plasticity: from synapses to maps. Annu. Rev. Neurosci. 21, 149–186 (1998)

    Article  CAS  PubMed  Google Scholar 

  2. Sanes, J. N. & Donoghue, J. P. Plasticity and primary motor cortex. Annu. Rev. Neurosci. 23, 393–415 (2000)

    Article  CAS  PubMed  Google Scholar 

  3. Monfils, M. H., Plautz, E. J. & Kleim, J. A. In search of the motor engram: motor map plasticity as a mechanism for encoding motor experience. Neuroscientist 11, 471–483 (2005)

    Article  PubMed  Google Scholar 

  4. Nudo, R. J., Milliken, G. W., Jenkins, W. M. & Merzenich, M. M. Use-dependent alterations of movement representations in primary motor cortex of adult squirrel monkeys. J. Neurosci. 16, 785–807 (1996)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kleim, J. A., Barbay, S. & Nudo, R. J. Functional reorganization of the rat motor cortex following motor skill learning. J. Neurophysiol. 80, 3321–3325 (1998)

    Article  CAS  PubMed  Google Scholar 

  6. Nudo, R. J., Wise, B. M., SiFuentes, F. & Milliken, G. W. Neural substrates for the effects of rehabilitative training on motor recovery after ischemic infarct. Science 272, 1791–1794 (1996)

    Article  ADS  CAS  PubMed  Google Scholar 

  7. Raineteau, O. & Schwab, M. E. Plasticity of motor systems after incomplete spinal cord injury. Nature Rev. Neurosci. 2, 263–273 (2001)

    Article  CAS  Google Scholar 

  8. Hebb, D. O. The Organization of Behaviour: a Neuropsychological Theory (Wiley, New York, 1949)

  9. Iriki, A., Pavlides, C., Keller, A. & Asanuma, H. Long-term potentiation in the motor cortex. Science 245, 1385–1387 (1989)

    Article  ADS  CAS  PubMed  Google Scholar 

  10. Hess, G., Aizenman, C. D. & Donoghue, J. P. Conditions for the induction of long-term potentiation in layer II/III horizontal connections of the rat motor cortex. J. Neurophysiol. 75, 1765–1778 (1996)

    Article  CAS  PubMed  Google Scholar 

  11. Racine, R. J., Chapman, C. A., Trepel, C., Teskey, G. C. & Milgram, N. W. Post-activation potentiation in the neocortex. IV. Multiple sessions required for induction of long-term potentiation in the chronic preparation. Brain Res. 702, 87–93 (1995)

    Article  CAS  PubMed  Google Scholar 

  12. Nudo, R. J., Jenkins, W. M. & Merzenich, M. M. Repetitive microstimulation alters the cortical representation of movements in adult rats. Somatosens. Mot. Res. 7, 463–483 (1990)

    Article  CAS  PubMed  Google Scholar 

  13. Monfils, M. H., VandenBerg, P. M., Kleim, J. A. & Teskey, G. C. Long-term potentiation induces expanded movement representations and dendritic hypertrophy in layer V of rat sensorimotor neocortex. Cereb. Cortex 14, 586–593 (2004)

    Article  PubMed  Google Scholar 

  14. Shors, T. J. & Matzel, L. D. Long-term potentiation: what’s learning got to do with it?. Behav. Brain Sci. 20, 597–614 (1997)

    CAS  PubMed  Google Scholar 

  15. Markram, H., Lubke, J., Frotscher, M. & Sakmann, B. Regulation of synaptic efficacy by coincidence of postsynaptic APs and EPSPs. Science 275, 213–215 (1997)

    Article  CAS  PubMed  Google Scholar 

  16. Dan, Y. & Poo, M. Spike timing-dependent plasticity of neural circuits. Neuron 44, 23–30 (2004)

    Article  CAS  PubMed  Google Scholar 

  17. Mavoori, J., Jackson, A., Diorio, C. & Fetz, E. E. An autonomous implantable computer for neural recording and stimulation in unrestrained primates. J. Neurosci. Methods 148, 71–77 (2005)

    Article  PubMed  Google Scholar 

  18. Jackson, A., Moritz, C. T., Mavoori, J., Lucas, T. H. & Fetz, E. E. The Neurochip BCI: Towards a neural prosthesis for upper limb function. IEEE Trans. Neural Sys. Rehab. Eng. 14, 187–190 (2006)

    Article  Google Scholar 

  19. Jackson, A., Mavoori, J. & Fetz, E. E. Correlations between the same motor cortex cells and arm muscles during a trained task, free behaviour and natural sleep in the macaque monkey. J. Neurophysiol. (in the press).

  20. Maynard, M. E. et al. Neuronal interactions improve cortical population coding of movement direction. J. Neurosci. 19, 8083–8093 (1999)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ito, M. & Kano, M. Long-lasting depression of parallel fibre-Purkinje cell transmission induced by conjunctive stimulation of parallel fibres and climbing fibres in the cerebellar cortex. Neurosci. Lett. 33, 253–258 (1982)

    Article  CAS  PubMed  Google Scholar 

  22. Huang, Y-Y., Pittenger, C. & Kandel, E. R. A form of long-lasting, learning-related synaptic plasticity in the hippocampus induced by heterosynaptic low-frequency pairing. Proc. Natl Acad. Sci. USA 101, 859–864 (2004)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  23. Baranyi, A. & Feher, O. Synaptic facilitation requires paired activation of convergent pathways in the neocortex. Nature 290, 413–415 (1981)

    Article  ADS  CAS  PubMed  Google Scholar 

  24. Jankowska, E., Padel, Y. & Tanaka, R. The mode of activation of pyramidal tract cells by intracortical stimuli. J. Physiol. (Lond.) 249, 617–636 (1975)

    Article  CAS  Google Scholar 

  25. Jackson, A., Gee, V. J., Baker, S. N. & Lemon, R. N. Synchrony between neurons with similar muscle fields in monkey motor cortex. Neuron 38, 115–125 (2002)

    Article  Google Scholar 

  26. Fetz, E. E., Toyama, K. & Smith, W. A. in Cerebral Cortex Vol. 9 (ed. Peters, A.) 1–47 (Plenum, New York, 1991)

  27. Hatsopoulos, N. G., Ojakangas, C. L., Paninski, L. & Donoghue, J. P. Information about movement direction obtained from synchronous activity of motor cortical neurons. Proc. Natl Acad. Sci. USA 95, 15706–15711 (1998)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  28. Fregnac, Y., Shulz, D., Thorpe, S. & Bienenstock, E. A cellular analogue of visual cortical plasticity. Nature 333, 367–370 (1988)

    Article  ADS  CAS  PubMed  Google Scholar 

  29. Ahissar, E. et al. Dependence of cortical plasticity on correlated activity of single neurons and on behavioral context. Science 257, 1412–1415 (1992)

    Article  ADS  CAS  PubMed  Google Scholar 

  30. Mu, Y. & Poo, M. Spike timing-dependent LTP/LTD mediates visual experience-dependent plasticity in a developing retinotectal system. Neuron 50, 115–125 (2006)

    Article  CAS  PubMed  Google Scholar 

  31. Stickgold, R. & Walker, M. P. Sleep and memory: the ongoing debate. Sleep 28, 1225–1226 (2005)

    Article  PubMed  Google Scholar 

  32. Prochazka, A., Mushahwar, V. K. & McCreery, D. B. Neural prostheses. J. Physiol. (Lond.) 533, 99–109 (2001)

    Article  CAS  Google Scholar 

  33. Plautz, E. J. et al. Post-infarct cortical plasticity and behavioral recovery using concurrent cortical stimulation and rehabilitative training: a feasibility study in primates. Neurol. Res. 25, 801–810 (2003)

    Article  PubMed  Google Scholar 

  34. Khedr, E. M., Ahmed, M. A., Fathy, N. & Rothwell, J. C. Therapeutic trial of repetitive transcranial magnetic stimulation after acute ischemic stroke. Neurology 65, 466–468 (2005)

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank C. Kirby for technical help, F. Miles for development of the Neurochip stimulator, L. Shupe for programming, and S. Perlmutter for advice. This work was supported by grants from the National Institutes of Health, the Office of Naval Research and the University of Washington Royalty Research Fund. Author Contributions A.J. and E.E.F. conceived and designed the experiment. J.M. designed the Neurochip electronics. A.J. and J.M. performed the experiments. A.J. and E.E.F. wrote the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eberhard E. Fetz.

Ethics declarations

Competing interests

Reprints and permissions information is available at www.nature.com/reprints. The authors declare no competing financial interests.

Supplementary information

Supplementary Table 1

Supplementary material details surgical procedures, the Neurochip electronics and additional methods. Supporting data includes documentation of cell firing patterns, further examples of conditioning experiments and a table summarising all sessions. (PDF 620 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jackson, A., Mavoori, J. & Fetz, E. Long-term motor cortex plasticity induced by an electronic neural implant. Nature 444, 56–60 (2006). https://doi.org/10.1038/nature05226

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature05226

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing