Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Ion permeation through the Na+,K+-ATPase

Abstract

P-type ATPase pumps generate concentration gradients of cations across membranes in nearly all cells. They provide a polar transmembrane pathway, to which access is strictly controlled by coupled gates that are constrained to open alternately, thereby enabling thermodynamically uphill ion transport (for example, see ref. 1). Here we examine the ion pathway through the Na+,K+-ATPase, a representative P-type pump, after uncoupling its extra- and intracellular gates with the marine toxin palytoxin2. We use small hydrophilic thiol-specific reagents3 as extracellular probes and we monitor their reactions, and the consequences, with cysteine residues introduced along the anticipated cation pathway through the pump. The distinct effects of differently charged reagents indicate that a wide outer vestibule penetrates deep into the Na+,K+-ATPase, where the pathway narrows and leads to a charge-selectivity filter. Acidic residues in this region, which are conserved to coordinate pumped ions, allow the approach of cations but exclude anions. Reversing the charge at just one of those positions converts the pathway from cation selective to anion selective. Close structural homology among the catalytic subunits of Ca2+-, Na+,K+- and H+,K+-ATPases4,5,6 argues that their extracytosolic cation exchange pathways all share these physical characteristics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Homology model of the Na + ,K + -ATPase transmembrane domain.
Figure 2: Effects of MTSET + and MTSES - on E321C, G805C, T806C and G337C mutants.
Figure 3: Analysis of MTS-reagent action on G805C and T806C mutants.
Figure 4: Charge selectivity in palytoxin-bound pump–channels.

Similar content being viewed by others

References

  1. Lauger, P. Electrogenic Ion Pumps (Sinauer, Sunderland, Massachusetts, 1991)

    Google Scholar 

  2. Artigas, P. & Gadsby, D. C. Na+/K+-pump ligands modulate gating of palytoxin-induced ion channels. Proc. Natl Acad. Sci. USA 21, 501–505 (2003)

    Article  ADS  Google Scholar 

  3. Karlin, A. & Akabas, M. H. Substituted-cysteine accessibility method. Methods Enzymol. 293, 123–145 (1998)

    Article  CAS  Google Scholar 

  4. Sweadner, K. J. & Donnet, C. Structural similarities of Na,K-ATPase and SERCA, the Ca2+-ATPase of the sarcoplasmic reticulum. Biochem. J. 356, 685–704 (2001)

    Article  CAS  Google Scholar 

  5. Ogawa, H. & Toyoshima, C. Homology modeling of the cation binding sites of Na+K+-ATPase. Proc. Natl Acad. Sci. USA 99, 15977–15982 (2002)

    Article  ADS  CAS  Google Scholar 

  6. Munson, K., Garcia, R. & Sachs, G. Inhibitor and ion binding sites on the gastric H,K-ATPase. Biochemistry 44, 5267–5284 (2005)

    Article  CAS  Google Scholar 

  7. Toyoshima, C., Nakasako, M., Nomura, H. & Ogawa, H. Crystal structure of the calcium pump of sarcoplasmic reticulum at 2.6 Å resolution. Nature 405, 647–655 (2000)

    Article  ADS  CAS  Google Scholar 

  8. Toyoshima, C. & Nomura, H. Structural changes in the calcium pump accompanying the dissociation of calcium. Nature 418, 605–611 (2002)

    Article  ADS  CAS  Google Scholar 

  9. Rakowski, R. F. & Sagar, S. Found: Na+ and K+ binding sites of the sodium pump. News Physiol. Sci. 18, 164–168 (2003)

    CAS  PubMed  Google Scholar 

  10. Toyoshima, C., Nomura, H. & Tsuda, T. Lumenal gating mechanism revealed in calcium pump crystal structures with phosphate analogues. Nature 432, 361–368 (2004)

    Article  ADS  CAS  Google Scholar 

  11. Moller, J. V., Nissen, P., Sorensen, T. L.-M. & le Marie, M. Transport mechanism of the sarcoplasmic reticulum Ca2+-ATPase pump. Curr. Opin. Struct. Biol. 15, 387–393 (2005)

    Article  CAS  Google Scholar 

  12. Picard, M., Toyoshima, C. & Champeil, P. Effects of inhibitors on luminal opening of Ca2+ binding sites in an E2P-like complex of sarcoplasmic reticulum Ca2+-ATPase with Be2+-fluoride. J. Biol. Chem. 281, 3360–3369 (2006)

    Article  CAS  Google Scholar 

  13. Scheiner-Bobis, G., Meyer zu Heringdorf, D., Christ, M. & Habermann, E. Palytoxin induces K+ efflux from yeast cells expressing the mammalian sodium pump. Mol. Pharmacol. 45, 1132–1136 (1994)

    CAS  PubMed  Google Scholar 

  14. Guennoun, S. & Horisberger, J.-D. Structure of the 5th transmembrane segment of the Na,K-ATPase α subunit: a cysteine-scanning mutagenesis study. FEBS Lett. 482, 144–148 (2000)

    Article  CAS  Google Scholar 

  15. Horisberger, J.-D. Recent insights into the structure and mechanism of the sodium pump. Physiology (Bethesda) 19, 377–387 (2004)

    CAS  Google Scholar 

  16. Nielsen, J. M., Pedersen, P. A., Karlish, S. J. & Jorgensen, P. L. Importance of intramembrane carboxylic acids for occlusion of K+ ions at equilibrium in renal Na,K-ATPase. Biochemistry 37, 1961–1968 (1998)

    Article  CAS  Google Scholar 

  17. Artigas, P. & Gadsby, D. C. Large diameter of palytoxin-induced Na/K pump channels and modulation of palytoxin interaction by Na/K pump ligands. J. Gen. Physiol. 123, 357–376 (2004)

    Article  CAS  Google Scholar 

  18. Keramidas, A., Moorhouse, A. J., Schofield, P. R. & Barry, P. H. Ligand-gated ion channels: mechanisms underlying ion selectivity. Prog. Biophys. Mol. Biol. 86, 161–204 (2004)

    Article  CAS  Google Scholar 

  19. Zhang, P., Toyoshima, C., Yonekura, K., Green, N. M. & Stokes, D. L. Structure of the calcium pump from sarcoplasmic reticulum at 8-Å resolution. Nature 392, 835–839 (1998)

    Article  ADS  CAS  Google Scholar 

  20. Olesen, C., Sorensen, T. L., Nielsen, R. C., Moller, J. V. & Nissen, P. Dephosphorylation of the calcium pump coupled to counterion occlusion. Science 306, 2251–2255 (2004)

    Article  ADS  CAS  Google Scholar 

  21. Qiu, L. Y., Koenderink, J. B., Swarts, H. G., Willems, P. H. & De Pont, J. J. Phe783, Thr797, and Asp804 in transmembrane hairpin M5–M6 of Na+,K+-ATPase play a key role in ouabain binding. J. Biol. Chem. 278, 47240–47244 (2003)

    Article  CAS  Google Scholar 

  22. Asano, S. et al. The cavity structure for docking the K+-competitive inhibitors in the gastric proton pump. J. Biol. Chem. 279, 13968–13975 (2004)

    Article  CAS  Google Scholar 

  23. Apell, H. J. Structure–function relationship in P-type ATPases—a biophysical approach. Rev. Physiol. Biochem. Pharmacol. 150, 1–35 (2003)

    CAS  PubMed  Google Scholar 

  24. Vilsen, B. & Andersen, J. P. Mutation to the glutamate in the fourth membrane segment of Na+,K+-ATPase and Ca2+-ATPase affects cation binding from both sides of the membrane and destabilizes the occluded enzyme forms. Biochemistry 37, 10961–10971 (1998)

    Article  CAS  Google Scholar 

  25. Inesi, G., Ma, H., Lewis, D. & Xu, C. Ca2+ occlusion and gating function of Glu309 in the ADP-fluoroaluminate analog of the Ca2+-ATPase phosphoenzyme intermediate. J. Biol. Chem. 279, 31629–31637 (2004)

    Article  CAS  Google Scholar 

  26. Price, E. M., Rice, D. A. & Lingrel, J. B. Structure–function studies of Na,K-ATPase: site-directed mutagenesis of the border residues from the H1–H2 extracellular domain of the α subunit. J. Biol. Chem. 265, 6638–6641 (1990)

    CAS  PubMed  Google Scholar 

  27. Verrey, F. et al. Primary sequence of Xenopus laevis Na+-K+-ATPase and its localization in A6 kidney cells. Am. J. Physiol. 256, F1034–F1043 (1989)

    CAS  PubMed  Google Scholar 

  28. Good, P. J., Richter, K. & Dawid, I. B. A nervous system-specific isotype of the β subunit of Na+,K+-ATPase expressed during early development of Xenopus laevis. Proc. Natl Acad. Sci. USA 87, 9088–9092 (1990)

    Article  ADS  CAS  Google Scholar 

  29. Artigas, P. & Gadsby, D. C. Ouabain affinity determining residues lie close to the Na/K pump ion pathway. Proc. Natl Acad. Sci. USA 103, 12613–12618 (2006)

    Article  ADS  CAS  Google Scholar 

  30. Grenthe, I., Plyasunov, A. V. & Spahiu, K. In Modelling in Aquatic Chemistry (eds Grenthe, I. & Puigdomenech, I.) 325–426 (Organisation for Economic Co-operation and Development (OECD) Publications, Paris, 1997)

    Google Scholar 

Download references

Acknowledgements

We thank P. Artigas for advice and discussion; M. Mense and P. Vergani for discussion; and R.F. Rakowski for cDNAs encoding the Xenopus α1 and β Na+,K+-ATPase subunits. This work was supported by a grant from the NIH (to D.C.G.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David C. Gadsby.

Ethics declarations

Competing interests

Reprints and permissions information is available at www.nature.com/reprints. The authors declare no competing financial interests.

Supplementary information

Supplementary Figures

Supplementary Figures 1 and 3 provide stereo views of Figs. 1b and 4b, respectively. Supplementary Figure 2 shows accessibility of differently charged MTS reagents in mutant V807C. Supplementary Figure 4 illustrates likely arrangements of ion-coordinating residues in different functional states of the Na+,K+-ATPase. (PDF 456 kb)

Supplementary Methods

Supplementary methodological details of our experimental approach are appended (PDF 75 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reyes, N., Gadsby, D. Ion permeation through the Na+,K+-ATPase. Nature 443, 470–474 (2006). https://doi.org/10.1038/nature05129

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature05129

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing