Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The type Ia supernova SNLS-03D3bb from a super-Chandrasekhar-mass white dwarf star

Abstract

The accelerating expansion of the Universe, and the need for dark energy, were inferred from observations1,2 of type Ia supernovae. There is a consensus that type Ia supernovae are thermonuclear explosions that destroy carbon–oxygen white dwarf stars that have accreted matter from a companion star3, although the nature of this companion remains uncertain. These supernovae are thought to be reliable distance indicators because they have a standard amount of fuel and a uniform trigger: they are predicted to explode when the mass of the white dwarf nears the Chandrasekhar mass4 of 1.4 solar masses (M). Here we show that the high-redshift supernova SNLS-03D3bb has an exceptionally high luminosity and low kinetic energy that both imply a super-Chandrasekhar-mass progenitor. Super-Chandrasekhar-mass supernovae should occur preferentially in a young stellar population, so this may provide an explanation for the observed trend that overluminous type Ia supernovae occur only in ‘young’ environments5,6. As this supernova does not obey the relations that allow type Ia supernovae to be calibrated as standard candles, and as no counterparts have been found at low redshift, future cosmology studies will have to consider possible contamination from such events.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The lightcurve of SNLS-03D3bb.
Figure 3: Keck LRIS spectrum of SNLS-03D3bb at two days after maximum light compared to a spectrum of the normal type Ia supernova SN 1994D.
Figure 2: Bolometric luminosity versus implied 56Ni mass for SNLS-03D3bb and low-redshift type Ia supernovae7.
Figure 4: Inferred Ni mass versus Si ii 615 nm velocity.

Similar content being viewed by others

References

  1. Perlmutter, S. et al. Measurements of Omega and Lambda from 42 high-redshift supernovae. Astrophys. J. 517, 565–586 (1999)

    Article  ADS  Google Scholar 

  2. Riess, A. G. et al. Observational evidence from supernovae for an accelerating Universe and a cosmological constant. Astron. J. 116, 1009–1038 (1998)

    Article  ADS  Google Scholar 

  3. Hoyle, F. & Fowler, W. A. Nucleosynthesis in supernovae. Astrophys. J. 132, 565–590 (1960)

    Article  ADS  CAS  Google Scholar 

  4. Chandrasekhar, S. The maximum mass of ideal white dwarfs. Astrophys. J. 74, 81–82 (1931)

    Article  ADS  Google Scholar 

  5. Sullivan, M. et al. Rates and properties of type Ia supernovae as a function of mass and star-formation in their host galaxies. Astrophys. J. (in the press); preprint at http://www.arXiv.org/astro-ph/0605455 (2006)

  6. Hamuy, M. et al. The absolute luminosities of the Calan/Tololo type IA supernovae. Astron. J. 112, 2391–2397 (1996)

    Article  ADS  Google Scholar 

  7. Astier, P. et al. The Supernova Legacy Survey: measurement of ΩM, ΩΛ and w from the first year data set. Astron. Astrophys. 447, 31–48 (2006)

    Article  ADS  Google Scholar 

  8. Howell, D. A., Höflich, P., Wang, L. & Wheeler, J. C. Evidence for asphericity in a subluminous type Ia supernova: spectropolarimetry of SN 1999by. Astrophys. J. 556, 302–321 (2001)

    Article  ADS  CAS  Google Scholar 

  9. Kasen, D., Nugent, P., Thomas, R. C. & Wang, L. Could there be a hole in type Ia supernovae? Astrophys. J. 610, 876–887 (2004)

    Article  ADS  Google Scholar 

  10. Phillips, M. M. The absolute magnitudes of type IA supernovae. Astrophys. J. Lett. 413, L105–L108 (1993)

    Article  ADS  Google Scholar 

  11. Colgate, S. A. & McKee, C. Early supernova luminosity. Astrophys. J. 157, 623–644 (1969)

    Article  ADS  CAS  Google Scholar 

  12. Woosley, S. E. & Weaver, T. A. The physics of supernova explosions. Annu. Rev. Astron. Astrophys. 24, 205–253 (1986)

    Article  ADS  CAS  Google Scholar 

  13. Branch, D. The Hubble constant from nickel radioactivity in type IA supernovae. Astrophys. J. 392, 35–40 (1992)

    Article  ADS  CAS  Google Scholar 

  14. Nomoto, K., Thielemann, F.-K. & Yokoi, K. Accreting white dwarf models of Type I supernovae. III—Carbon deflagration supernovae. Astrophys. J. 286, 644–658 (1984)

    Article  ADS  CAS  Google Scholar 

  15. Hoflich, P. Analysis of the type IA supernova SN 1994D. Astrophys. J. 443, 89–108 (1995)

    Article  ADS  Google Scholar 

  16. Khokhlov, A., Mueller, E. & Hoeflich, P. Light curves of type IA supernova models with different explosion mechanisms. Astron. Astrophys. 270, 223–248 (1993)

    ADS  CAS  Google Scholar 

  17. Fisher, A., Branch, D., Hatano, K. & Baron, E. On the spectrum and nature of the peculiar type IA supernova 1991T. Mon. Not. R. Astron. Soc. 304, 67–74 (1999)

    Article  ADS  CAS  Google Scholar 

  18. Yoon, S.-C. & Langer, N. On the evolution of rapidly rotating massive white dwarfs towards supernovae or collapses. Astron. Astrophys. 435, 967–985 (2005)

    Article  ADS  Google Scholar 

  19. Tutukov, A. V. & Yungelson, L. R. Merging of binary white dwarfs neutron stars and black-holes under the influence of gravitational wave radiation. Mon. Not. R. Astron. Soc. 268, 871–879 (1994)

    Article  ADS  CAS  Google Scholar 

  20. Howell, D. A. The progenitors of subluminous type Ia supernovae. Astrophys. J. Lett. 554, L193–L196 (2001)

    Article  ADS  Google Scholar 

  21. Arnett, W. D. Type I supernovae. I—Analytic solutions for the early part of the light curve. Astrophys. J. 253, 785–797 (1982)

    Article  ADS  CAS  Google Scholar 

  22. Arnett, W. D., Branch, D. & Wheeler, J. C. Hubble's constant and exploding carbon-oxygen white dwarf models for type I supernovae. Nature 314, 337–338 (1985)

    Article  ADS  CAS  Google Scholar 

  23. Nugent, P. et al. Low Hubble constant from the physics of type Ia supernovae. Phys. Rev. Lett. 75, 394–397 (1995)

    Article  ADS  CAS  Google Scholar 

  24. Nugent, P. E. Non-local thermodynamic equilibrium spectrum synthesis of type IA supernovae. PhD thesis, Univ. Oklahoma (1997)

  25. Conley, A. et al. The rise time of type Ia supernovae from the Supernova Legacy Survey. Astron. J. (in the press); preprint at http://www.arXiv.org/astro-ph/0607363 (2006)

  26. Benetti, S. et al. The diversity of type Ia supernovae: evidence for systematics? Astrophys. J. 623, 1011–1016 (2005)

    Article  ADS  Google Scholar 

  27. Nugent, P., Kim, A. & Perlmutter, S. K-corrections and extinction corrections for type Ia supernovae. Publ. Astron. Soc. Pacif. 114, 803–819 (2002)

    Article  ADS  Google Scholar 

  28. Bessell, M. S. UBVRI passbands. Publ. Astron. Soc. Pacif. 102, 1181–1199 (1990)

    Article  ADS  Google Scholar 

  29. Fisher, A., Branch, D., Nugent, P. & Baron, E. Evidence for a high-velocity carbon-rich layer in the type IA SN 1990N. Astrophys. J. Lett. 481, L89–L92 (1997)

    Article  ADS  CAS  Google Scholar 

  30. Marion, G. H. et al. Low carbon abundance in type Ia supernovae. Astrophys. J. 645, 1392–1401 (2006)

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

SNLS relies on observations with MegaCam, a joint project of CFHT and CEA/DAPNIA, at the Canada–France–Hawaii Telescope (CFHT). We used data products from the Canadian Astronomy Data Centre as part of the CFHT Legacy Survey. Some data were obtained at the W. M. Keck Observatory. We acknowledge support from NSERC, NERSC, CIAR, CNRS/IN2P3, CNRS/INSU, CEA and the DOE.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Andrew Howell.

Ethics declarations

Competing interests

Reprints and permissions information is available at www.nature.com/reprints. The authors declare no competing financial interests.

Supplementary information

Supplementary Notes

This file contains Supplementary Methods, Supplementary Figure, Supplementary Table and additional references. (PDF 141 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Andrew Howell, D., Sullivan, M., Nugent, P. et al. The type Ia supernova SNLS-03D3bb from a super-Chandrasekhar-mass white dwarf star. Nature 443, 308–311 (2006). https://doi.org/10.1038/nature05103

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature05103

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing