Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

P2X receptors as cell-surface ATP sensors in health and disease

Abstract

P2X receptors are membrane ion channels activated by the binding of extracellular adenosine triphosphate (ATP). For years their functional significance was consigned to distant regions of the autonomic nervous system, but recent work indicates several further key roles, such as afferent signalling, chronic pain, and in autocrine loops of endothelial and epithelial cells. P2X receptors have a molecular architecture distinct from other ion channel protein families, and have several unique functional properties.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: ATP signalling and families of mammalian ionotropic receptors.
Figure 2: Summary of P2X receptor structure–function studies.
Figure 3: Sensory transduction by P2X receptors.

Similar content being viewed by others

References

  1. Holton, P. The liberation of adenosine triphosphate on antidromic stimulation of sensory nerves. J. Physiol. (Lond.) 145, 494–504 (1959)

    Article  CAS  Google Scholar 

  2. Burnstock, G. Purinergic nerves. Pharmacol. Rev. 24, 509–581 (1972)

    CAS  PubMed  Google Scholar 

  3. Ralevic, V. & Burnstock, G. Receptors for purines and pyrimidines. Pharmacol. Rev. 50, 413–492 (1998)

    CAS  PubMed  Google Scholar 

  4. Zimmermann, H. Extracellular metabolism of ATP and other nucleotides. Naunyn Schmiedebergs Arch. Pharmacol. 362, 299–309 (2000)

    Article  CAS  Google Scholar 

  5. North, R. A. Molecular physiology of P2X receptors. Physiol. Rev. 82, 1013–1067 (2002)

    Article  CAS  Google Scholar 

  6. Valera, S. et al. A new class of ligand-gated ion channel defined by P2X receptor for extracellular ATP. Nature 371, 516–519 (1994)

    Article  ADS  CAS  Google Scholar 

  7. Brake, A. J., Wagenbach, M. J. & Julius, D. New structural motif for ligand-gated ion channels defined by an ionotropic ATP receptor. Nature 371, 519–523 (1994)

    Article  ADS  CAS  Google Scholar 

  8. Nicke, A. et al. P2X1 and P2X3 receptors form stable trimers: a novel structural motif of ligand-gated ion channels. EMBO J. 17, 3016–3028 (1998)

    Article  CAS  Google Scholar 

  9. Barrera, N. P., Ormond, S. J., Henderson, R. M., Murrell-Lagnado, R. D. & Edwardson, J. M. Atomic force microscopy imaging demonstrates that P2X2 receptors are trimers but that P2X6 receptor subunits do not oligomerize. J. Biol. Chem. 280, 10759–10765 (2005)

    Article  CAS  Google Scholar 

  10. Jiang, L. H. et al. Subunit arrangement in P2X receptors. J. Neurosci. 23, 8903–8910 (2003)

    Article  CAS  Google Scholar 

  11. Roberts, J. A. & Evans, R. J. ATP binding at human P2X1 receptors. Contribution of aromatic and basic amino acids revealed using mutagenesis and partial agonists. J. Biol. Chem. 279, 9043–9055 (2004)

    Article  CAS  Google Scholar 

  12. Nagaya, N., Tittle, R. K., Saar, N., Dellal, S. S. & Hume, R. I. An intersubunit zinc binding site in rat P2X2 receptors. J. Biol. Chem. 280, 25982–25993 (2005)

    Article  CAS  Google Scholar 

  13. Unwin, N. Refined structure of the nicotinic acetylcholine receptor at 4 Å resolution. J. Mol. Biol. 346, 967–989 (2005)

    Article  CAS  Google Scholar 

  14. Madden, D. R. The structure and function of glutamate receptor ion channels. Nature Rev. Neurosci. 3, 91–101 (2002)

    Article  CAS  Google Scholar 

  15. Bo, X. et al. Pharmacological and biophysical properties of the human P2X5 receptor. Mol. Pharmacol. 63, 1407–1416 (2003)

    Article  CAS  Google Scholar 

  16. Ding, S. & Sachs, F. Ion permeation and block of P2X2 purinoceptors: single channel recordings. J. Membr. Biol. 172, 215–223 (1999)

    Article  CAS  Google Scholar 

  17. Egan, T. M. & Khakh, B. S. Contribution of calcium ions to P2X channel responses. J. Neurosci. 24, 3413–3420 (2004)

    Article  CAS  Google Scholar 

  18. Doyle, D. A. Structural changes during ion channel gating. Trends Neurosci. 27, 298–302 (2004)

    Article  CAS  Google Scholar 

  19. Miyazawa, A., Fujiyoshi, Y. & Unwin, N. Structure and gating mechanism of the acetylcholine receptor pore. Nature 424, 949–955 (2003)

    Article  ADS  Google Scholar 

  20. Khakh, B. S., Bao, X., Labarca, C. & Lester, H. A. Neuronal P2X receptor-transmitter-gated cation channels change their ion selectivity in seconds. Nature Neurosci. 2, 322–330 (1999)

    Article  CAS  Google Scholar 

  21. Doyle, D. A. Molecular insights into ion channel function. Mol. Membr. Biol. 21, 221–225 (2004)

    Article  CAS  Google Scholar 

  22. Fisher, J. A., Girdler, G. & Khakh, B. S. Time resolved measurement of state specific P2X ion channel cytosolic gating motions. J. Neurosci. 24, 10475–10487 (2004)

    Article  CAS  Google Scholar 

  23. Miyazawa, A., Fujiyoshi, Y., Stowell, M. & Unwin, N. Nicotinic acetylcholine receptor at 4.6Å resolution: transverse tunnels in the channel wall. J. Mol. Biol. 288, 765–786 (1999)

    Article  CAS  Google Scholar 

  24. Chaumont, S., Jiang, L. H., Penna, A., North, R. A. & Rassendren, F. Identification of a trafficking motif involved in the stabilization and polarization of P2X receptors. J. Biol. Chem. 279, 29628–29638 (2004)

    Article  CAS  Google Scholar 

  25. Royle, S. J., Bobanovic, L. K. & Murrell-Lagnado, R. D. Identification of a non-canonical tyrosine-based endocytic motif in an ionotropic receptor. J. Biol. Chem. 277, 35378–35385 (2002)

    Article  CAS  Google Scholar 

  26. Eickhorst, A., Berson, A., Cockayne, D., Lester, H. A. & Khakh, B. S. Control of P2X2 channel permeability by the cytosolic domain. J. Gen. Physiol. 120, 119–131 (2002)

    Article  CAS  Google Scholar 

  27. Denlinger, L. C. et al. Cutting edge: the nucleotide receptor P2X7 contains multiple protein- and lipid-interaction motifs including a potential binding site for bacterial lipopolysaccharide. J. Immunol. 167, 1871–1876 (2001)

    Article  CAS  Google Scholar 

  28. Kim, M., Jiang, L. H., Wilson, H. L., North, R. A. & Surprenant, A. Proteomic and functional evidence for a P2X7 receptor signalling complex. EMBO J. 20, 6347–6358 (2001)

    Article  CAS  Google Scholar 

  29. Masin, M., Kerschensteiner, D., Dumke, K., Rubio, M. E. & Soto, F. Fe65 interacts with P2X2 subunits at excitatory synapses and modulates receptor function. J. Biol. Chem. 281, 4100–4108 (2006)

    Article  CAS  Google Scholar 

  30. Rubio, M. E. & Soto, F. Distinct localisation of P2X receptors at excitatory postsynaptic specializations. J. Neurosci. 21, 641–653 (2001)

    Article  CAS  Google Scholar 

  31. Edwards, F. A., Gibb, A. J. & Colquhoun, D. ATP receptor-mediated synaptic currents in the central nervous system. Nature 359, 144–147 (1992)

    Article  ADS  CAS  Google Scholar 

  32. Jo, Y. H. & Role, L. W. Coordinate release of ATP and GABA at in vitro synapses of lateral hypothalamic neurons. J. Neurosci. 22, 4794–4804 (2002)

    Article  CAS  Google Scholar 

  33. Jo, Y.-H. & Schlichter, R. Synaptic corelease of ATP and GABA in cultured spinal neurons. Nature Neurosci. 2, 241–245 (1999)

    Article  CAS  Google Scholar 

  34. Pankratov, Y. V., Lalo, U. V. & Krishtal, O. A. Role for P2X receptors in long-term potentiation. J. Neurosci. 22, 8363–8369 (2002)

    Article  CAS  Google Scholar 

  35. Mulryan, K. et al. Reduced vas deferens contraction and male infertility in mice lacking P2X1 receptors. Nature 403, 86–89 (2000)

    Article  ADS  CAS  Google Scholar 

  36. Ren, J. et al. P2X2 subunits contribute to fast synaptic excitation in myenteric neurons of the mouse small intestine. J. Physiol. (Lond.) 552, 809–821 (2003)

    Article  CAS  Google Scholar 

  37. Gu, J. G. & MacDermott, A. B. Activation of ATP P2X receptors elicits glutamate release from sensory neuron synapses. Nature 389, 749–753 (1997)

    Article  ADS  CAS  Google Scholar 

  38. Khakh, B. S. & Henderson, G. ATP receptor-mediated enhancement of fast excitatory neurotransmitter release in the brain. Mol. Pharmacol. 54, 372–378 (1998)

    Article  CAS  Google Scholar 

  39. Nakatsuka, T. & Gu, J. G. ATP P2X receptor-mediated enhancement of glutamate release and evoked EPSCs in dorsal horn neurons of the rat spinal cord. J. Neurosci. 21, 6522–6531 (2001)

    Article  CAS  Google Scholar 

  40. Khakh, B. S., Gittermann, D., Cockayne, D. A. & Jones, A. ATP modulation of excitatory synapses onto interneurons. J. Neurosci. 23, 7426–7437 (2003)

    Article  CAS  Google Scholar 

  41. Shigetomi, E. & Kato, F. Action potential-independent release of glutamate by Ca2+ entry through presynaptic P2X receptors elicits postsynaptic firing in the brainstem autonomic network. J. Neurosci. 24, 3125–3135 (2004)

    Article  CAS  Google Scholar 

  42. Bowser, D. N. & Khakh, B. S. ATP excites interneurons and astrocytes to increase synaptic inhibition in neuronal networks. J. Neurosci. 24, 8606–8620 (2004)

    Article  CAS  Google Scholar 

  43. Kawamura, M., Gachet, C., Inoue, K. & Kato, F. Direct excitation of inhibitory interneurons by extracellular ATP mediated by P2Y1 receptors in the hippocampal slice. J. Neurosci. 24, 10835–10845 (2004)

    Article  CAS  Google Scholar 

  44. Wieraszko, A., Goldsmith, G. & Seyfried, T. N. Stimulation-dependent release of adenosine triphosphate from hippocampal slices. Brain Res. 485, 244–250 (1989)

    Article  CAS  Google Scholar 

  45. Gordon, G. R. et al. Norepinephrine triggers release of glial ATP to increase postsynaptic efficacy. Nature Neurosci. 8, 1078–1086 (2005)

    Article  CAS  Google Scholar 

  46. Davalos, D. et al. ATP mediates rapid microglial response to local brain injury in vivo. Nature Neurosci. 8, 752–758 (2005)

    Article  CAS  Google Scholar 

  47. Wang, X. et al. P2X7 receptor inhibition improves recovery after spinal cord injury. Nature Med. 10, 821–827 (2004)

    Article  CAS  Google Scholar 

  48. Dulla, C. G. et al. Adenosine and ATP link PCO2 to cortical excitability via pH. Neuron 48, 1011–1023 (2005)

    Article  CAS  Google Scholar 

  49. Tsuda, M. et al. P2X4 receptors induced in spinal microglia gate tactile allodynia after nerve injury. Nature 424, 778–783 (2003)

    Article  ADS  CAS  Google Scholar 

  50. Coull, J. A. et al. BDNF from microglia causes the shift in neuronal anion gradient underlying neuropathic pain. Nature 438, 1017–1021 (2005)

    Article  ADS  CAS  Google Scholar 

  51. Bleehen, T. & Keele, C. A. Observations on the algogenic actions of adenosine compounds on the human blister base preparation. Pain 3, 367–377 (1977)

    Article  CAS  Google Scholar 

  52. Hamilton, S. G., Warburton, J., Bhattacharjee, A., Ward, J. & McMahon, S. B. ATP in human skin elicits a dose-related pain response which is potentiated under conditions of hyperalgesia. Brain 123, 1238–1246 (2000)

    Article  Google Scholar 

  53. Chen, C. C. et al. A P2X purinoceptor expressed by a subset of sensory neurons. Nature 377, 428–431 (1995)

    Article  ADS  CAS  Google Scholar 

  54. Lewis, C. et al. Coexpression of P2X2 and P2X3 receptor subunits can account for ATP-gated currents in sensory neurons. Nature 377, 432–435 (1995)

    Article  ADS  CAS  Google Scholar 

  55. Khakh, B. S., Humphrey, P. P. & Surprenant, A. Electrophysiological properties of P2X-purinoceptors in rat superior cervical, nodose and guinea-pig coeliac neurones. J. Physiol. (Lond.) 484, 385–395 (1995)

    Article  CAS  Google Scholar 

  56. Cockayne, D. A. et al. Urinary bladder hyporeflexia and reduced pain-related behaviour in P2X3-deficient mice. Nature 407, 1011–1015 (2000)

    Article  ADS  CAS  Google Scholar 

  57. Souslova, V. et al. Warm-coding deficits and aberrant inflammatory pain in mice lacking P2X3 receptors. Nature 407, 1015–1017 (2000)

    Article  ADS  CAS  Google Scholar 

  58. North, R. A. The P2X3 subunit: a molecular target in pain therapeutics. Curr. Opin. Investig. Drugs 4, 833–840 (2003)

    CAS  PubMed  Google Scholar 

  59. Jarvis, M. F. et al. A-317491, a novel potent and selective non-nucleotide antagonist of P2X3 and P2X2/3 receptors, reduces chronic inflammatory and neuropathic pain in the rat. Proc. Natl Acad. Sci. USA 99, 17179–17184 (2002)

    Article  ADS  CAS  Google Scholar 

  60. Kirkup, A. J., Booth, C. E., Chessell, I. P., Humphrey, P. P. & Grundy, D. Excitatory effect of P2X receptor activation on mesenteric afferent nerves in the anaesthetised rat. J. Physiol. (Lond.) 520, 551–563 (1999)

    Article  CAS  Google Scholar 

  61. Galligan, J. J. Enteric P2X receptors as potential targets for drug treatment of the irritable bowel syndrome. Br. J. Pharmacol. 141, 1294–1302 (2004)

    Article  CAS  Google Scholar 

  62. Finger, T. E. et al. ATP signaling is crucial for communication from taste buds to gustatory nerves. Science 310, 1495–1499 (2005)

    Article  ADS  CAS  Google Scholar 

  63. Gourine, A. V. On the peripheral and central chemoreception and control of breathing: an emerging role of ATP. J. Physiol. (Lond.) 568, 715–724 (2005)

    Article  CAS  Google Scholar 

  64. Gourine, A. V., Llaudet, E., Dale, N. & Spyer, K. M. ATP is a mediator of chemosensory transduction in the central nervous system. Nature 436, 108–111 (2005)

    Article  ADS  CAS  Google Scholar 

  65. Cockcroft, S. & Gomperts, B. D. ATP induces nucleotide permeability in rat mast cells. Nature 279, 541–542 (1979)

    Article  ADS  CAS  Google Scholar 

  66. Gordon, J. L. Extracellular ATP: effects, sources and fate. Biochem. J. 233, 309–319 (1986)

    Article  CAS  Google Scholar 

  67. Surprenant, A., Rassendren, F., Kawashima, E., North, R. A. & Buell, G. The cytolytic P2Z receptor for extracellular ATP identified as a P2X receptor (P2X7). Science 272, 735–738 (1996)

    Article  ADS  CAS  Google Scholar 

  68. Solle, M. et al. Altered cytokine production in mice lacking P2X7 receptors. J. Biol. Chem. 276, 125–132 (2001)

    Article  CAS  Google Scholar 

  69. Labasi, J. M. et al. Absence of the P2X7 receptor alters leukocyte function and attenuates an inflammatory response. J. Immunol. 168, 6436–6445 (2002)

    Article  CAS  Google Scholar 

  70. Ke, H. Z. et al. Deletion of the P2X7 nucleotide receptor reveals its regulatory roles in bone formation and resorption. Mol. Endocrinol. 17, 1356–1367 (2003)

    Article  CAS  Google Scholar 

  71. Virginio, C., MacKenzie, A., Rassendren, F. A., North, R. A. & Surprenant, A. Pore dilation of neuronal P2X receptor channels. Nature Neurosci. 2, 315–321 (1999)

    Article  CAS  Google Scholar 

  72. Jiang, L. H. et al. N-methyl-d-glucamine and propidium dyes utilize different permeation pathways at rat P2X7 receptors. Am. J. Physiol. Cell Physiol. 289, C1295–C1302 (2005)

    Article  CAS  Google Scholar 

  73. Elliott, J. I. et al. Membrane phosphatidylserine distribution as a non-apoptotic signalling mechanism in lymphocytes. Nature Cell Biol. 7, 808–816 (2005)

    Article  CAS  Google Scholar 

  74. Chessell, I. et al. Disruption of the P2X7 purinoceptor gene abolishes chronic inflammatory and neuropathic pain. Pain 114, 386–396 (2005)

    Article  CAS  Google Scholar 

  75. Ma, W. et al. Pore properties and pharmacological features of the P2X receptor channel in airway ciliated cells. J. Physiol. (Lond.) 571, 503–517 (2006)

    Article  CAS  Google Scholar 

  76. Yamamoto, K. et al. Impaired flow-dependent control of vascular tone and remodeling in P2X4-deficient mice. Nature Med. 12, 133–137 (2006)

    Article  CAS  Google Scholar 

  77. Agboh, K. C., Webb, T. E., Evans, R. J. & Ennion, S. J. Functional characterization of a P2X receptor from Schistosoma mansoni. J. Biol. Chem. 279, 41650–41657 (2004)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the staff of the LMB Visual Aids Unit and J. A. Fisher for help with the illustrations. Work in our laboratories is supported by the MRC, EMBO, HFSP, NIH and Wellcome Trust. We regret that space limitations prevented us from citing many important original papers.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Baljit S. Khakh or R. Alan North.

Ethics declarations

Competing interests

Reprints and permissions information is available at npg.nature.com/reprintsandpermissions. The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khakh, B., Alan North, R. P2X receptors as cell-surface ATP sensors in health and disease. Nature 442, 527–532 (2006). https://doi.org/10.1038/nature04886

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature04886

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing