Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A semiconductor source of triggered entangled photon pairs

Abstract

Entangled photon pairs are an important resource in quantum optics1, and are essential for quantum information2 applications such as quantum key distribution3,4 and controlled quantum logic operations5. The radiative decay of biexcitons—that is, states consisting of two bound electron–hole pairs—in a quantum dot has been proposed as a source of triggered polarization-entangled photon pairs6. To date, however, experiments have indicated that a splitting of the intermediate exciton energy yields only classically correlated emission7,8,9. Here we demonstrate triggered photon pair emission from single quantum dots suggestive of polarization entanglement. We achieve this by tuning the splitting to zero, through either application of an in-plane magnetic field or careful control of growth conditions. Entangled photon pairs generated ‘on demand’ have significant fundamental advantages over other schemes10,11,12,13, which can suffer from multiple pair emission, or require post-selection techniques or the use of photon-number discriminating detectors. Furthermore, control over the pair generation time is essential for scaling many quantum information schemes beyond a few gates. Our results suggest that a triggered entangled photon pair source could be implemented by a simple semiconductor light-emitting diode14.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Polarized photoluminescence spectra from single quantum dots.
Figure 2: Second order cross correlation of biexciton with exciton photons from conventional and degenerate single quantum dots.
Figure 3: Density matrices for the biexciton–exciton two-photon cascade from conventional and degenerate quantum dots.

Similar content being viewed by others

References

  1. Walls, D. F. & Milburn, G. J. Quantum Optics (Springer, Berlin, 1994)

    Book  Google Scholar 

  2. Bouwmeester, D., Ekert, A. K. & Zeilinger, A. The Physics of Quantum Information (Springer, Berlin, 2000)

    Book  Google Scholar 

  3. Ekert, A. K. Quantum cryptography based on Bell's theorem. Phys. Rev. Lett. 67, 661–663 (1991)

    Article  MathSciNet  CAS  ADS  Google Scholar 

  4. Gisin, N., Ribordy, G., Tittel, W. & Zbinden, H. Quantum cryptography. Rev. Mod. Phys. 74, 145–195 (2002)

    Article  ADS  Google Scholar 

  5. Knill, E., Laflamme, R. & Milburn, G. J. A scheme for efficient quantum computation with linear optics. Nature 409, 46–52 (2001)

    Article  CAS  ADS  Google Scholar 

  6. Benson, O., Santori, C., Pelton, M. & Yamamoto, Y. Regulated and entangled photons from a single quantum dot. Phys. Rev. Lett. 84, 2513–2516 (2000)

    Article  CAS  ADS  Google Scholar 

  7. Stevenson, R. M. et al. Quantum dots as a photon source for passive quantum key encoding. Phys. Rev. B 66, 081302 (2002)

    Article  ADS  Google Scholar 

  8. Santori, C., Fattal, D., Pelton, M., Solomon, G. S. & Yamamoto, Y. Polarization-correlated photon pairs from a single quantum dot. Phys. Rev. B 66, 045308 (2002)

    Article  ADS  Google Scholar 

  9. Ulrich, S. M., Strauf, S., Michler, P., Bacher, G. & Forchel, A. Triggered polarization-correlated photon pairs from a single CdSe quantum dot. Appl. Phys. Lett. 83, 1848–1850 (2003)

    Article  CAS  ADS  Google Scholar 

  10. Shih, Y. H. & Alley, C. O. New type of Einstein-Podolsky-Rosen-Bohm experiment using pairs of light quanta produced by optical parametric down conversion. Phys. Rev. Lett. 61, 2921–2924 (1988)

    Article  CAS  ADS  Google Scholar 

  11. Ou, Z. Y. & Mandel, L. Violation of Bell's inequality and classical probability in a two-photon correlation experiment. Phys. Rev. Lett. 61, 50–53 (1988)

    Article  MathSciNet  CAS  ADS  Google Scholar 

  12. Kiess, T. E., Shih, Y. H., Sergienko, A. V. & Alley, C. O. Einstein-Podolsky-Rosen-Bohm experiment using pairs of light quanta produced by type-II parametric down-conversion. Phys. Rev. Lett. 71, 3893–3897 (1993)

    Article  CAS  ADS  Google Scholar 

  13. Fattal, D. et al. Entanglement formation and violation of Bell's inequality with a semiconductor single photon source. Phys. Rev. Lett. 92, 037903 (2004)

    Article  ADS  Google Scholar 

  14. Yuan, Z. et al. Electrically driven single-photon source. Science 295, 102–105 (2002)

    Article  CAS  ADS  Google Scholar 

  15. Edamatsu, K., Oohata, G., Shimizu, R. & Itoh, T. Generation of ultraviolet entangled photons in a semiconductor. Nature 431, 167–170 (2004)

    Article  CAS  ADS  Google Scholar 

  16. Santori, C., Fattal, D., Vučković, J., Solomon, G. S. & Yamamoto, Y. Indistinguishable photons from a single-photon device. Nature 419, 594–597 (2002)

    Article  CAS  ADS  Google Scholar 

  17. Aspect, A., Grangier, P. & Roger, G. Experimental realization of Einstein-Podolsky-Rosen-Bohm Gedankenexperiment: A new violation of Bell's inequalities. Phys. Rev. Lett. 49, 91–94 (1982)

    Article  ADS  Google Scholar 

  18. Gammon, D., Snow, E. S., Shanabrook, B. V.,, Katzer, D. S. & Park, D. Fine structure splitting in the optical spectra of single GaAs quantum dots. Phys. Rev. Lett. 76, 3005–3008 (1996)

    Article  CAS  ADS  Google Scholar 

  19. Bimberg, D., Grundmann, M. & Ledentsov, N. N. Quantum Dot Heterostructures (Wiley, Chichester, 1999)

    Google Scholar 

  20. Young, R. J. et al. Inversion of exciton level splitting in quantum dots. Phys. Rev. B 72, 113305 (2005)

    Article  ADS  Google Scholar 

  21. Thompson, R. M. et al. Single-photon emission from exciton complexes in individual quantum dots. Phys. Rev. B 64, 201302 (2001)

    Article  ADS  Google Scholar 

  22. Rodt, S. et al. Repulsive exciton-exciton interaction in quantum dots. Phys. Rev. B 68, 035331 (2003)

    Article  ADS  Google Scholar 

  23. White, A. G., James, D. F. V., Eberhard, P. H. & Kwiat, P. G. Nonmaximally entangled states: Production, characterization, and utilization. Phys. Rev. Lett. 83, 3103–3107 (1999)

    Article  CAS  ADS  Google Scholar 

  24. James, D. F. V., Kwiat, P. G., Munro, W. J. & White, A. G. Measurement of qubits. Phys. Rev. A 64, 052312 (2001)

    Article  ADS  Google Scholar 

  25. Kwiat, P. G., Barraza-Lopez, S., Stefanov, A. & Gisin, N. Experimental entanglement distillation and ‘hidden’ non-locality. Nature 409, 1014–1017 (2001)

    Article  CAS  ADS  Google Scholar 

  26. Santori, C., Pelton, M., Solomon, G., Dale, Y. & Yamamoto, Y. Triggered single photons from a quantum dot. Phys. Rev. Lett. 86, 1502–1505 (2001)

    Article  CAS  ADS  Google Scholar 

  27. Pelton, M. et al. Efficient source of single photons: A single quantum dot in a micropost microcavity. Phys. Rev. Lett. 89, 233602 (2002)

    Article  ADS  Google Scholar 

  28. Bennett, A. J., Unitt, D. C., Atkinson, P., Ritchie, D. & Shields, A. J. High performance single photon sources from photolithographically defined pillar microcavities. Opt. Express 13, 50–55 (2005)

    Article  CAS  ADS  Google Scholar 

  29. Bayer, M. & Forchel, A. Temperature dependence of the exciton homogeneous linewidth in In0.60Ga0.40As/GaAs self-assembled quantum dots. Phys. Rev. B 65, 041308 (2002)

    Article  ADS  Google Scholar 

  30. Stevenson, R. M. et al. Magnetic-field-induced reduction of the exciton polarisation splitting in InAs quantum dots. Phys. Rev. B (in the press)

Download references

Acknowledgements

We acknowledge continued support from M. Pepper. This work was partially funded by the EU projects RAMBOQ, QAP and SANDiE, and by the EPSRC through the IRC for Quantum Information Processing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. M. Stevenson.

Ethics declarations

Competing interests

Reprints and permissions information is available at npg.nature.com/reprintsandpermissions. The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stevenson, R., Young, R., Atkinson, P. et al. A semiconductor source of triggered entangled photon pairs. Nature 439, 179–182 (2006). https://doi.org/10.1038/nature04446

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature04446

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing