Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

North Pacific seasonality and the glaciation of North America 2.7 million years ago

Abstract

In the context of gradual Cenozoic cooling, the timing of the onset of significant Northern Hemisphere glaciation 2.7 million years ago is consistent with Milankovitch's orbital theory, which posited that ice sheets grow when polar summertime insolation and temperature are low. However, the role of moisture supply in the initiation of large Northern Hemisphere ice sheets has remained unclear. The subarctic Pacific Ocean represents a significant source of water vapour to boreal North America, but it has been largely overlooked in efforts to explain Northern Hemisphere glaciation. Here we present alkenone unsaturation ratios and diatom oxygen isotope ratios from a sediment core in the western subarctic Pacific Ocean, indicating that 2.7 million years ago late-summer sea surface temperatures in this ocean region rose in response to an increase in stratification. At the same time, winter sea surface temperatures cooled, winter floating ice became more abundant and global climate descended into glacial conditions. We suggest that the observed summer warming extended into the autumn, providing water vapour to northern North America, where it precipitated and accumulated as snow, and thus allowed the initiation of Northern Hemisphere glaciation.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Palaeoceanographic data and model time series through the time interval marking the onset of major Northern Hemisphere glaciation.
Figure 2: Output for two equilibrium states of the CLIMBER-2 Earth system model.
Figure 3: Simulated area of permanent snow cover (shaded) for the ‘cold orbit’ configuration in the destratified (a) and stratified (b) equilibria.

Similar content being viewed by others

References

  1. Berger, A. & Loutre, M. F. Insolation values for the climate of the last 10 million years. Quat. Sci. Rev. 10, 297–317 (1991)

    Article  ADS  Google Scholar 

  2. Shackleton, N. J., Hall, M. & Pate, D. Pliocene stable isotope stratigraphy of Site 846. Proc. ODP Sci. Res. 138, 337–357 (1995)

    Google Scholar 

  3. Cane, M. A. & Molnar, P. Closing the Indonesian seaway as a precursor to East African aridification around 3–4 million years ago. Nature 411, 157–162 (2001)

    Article  ADS  CAS  Google Scholar 

  4. Ravelo, A. C., Andreasen, D. H., Lyle, M., Olivarez Lyle, A. & Wara, M. W. Regional climate shifts caused by gradual cooling in the Pliocene epoch. Nature 429, 263–267 (2004)

    Article  ADS  CAS  Google Scholar 

  5. Haug, G. H. & Tiedemann, R. Effect of the formation of the Isthmus of Panama on Atlantic Ocean thermohaline circulation. Nature 393, 673–676 (1998)

    Article  ADS  CAS  Google Scholar 

  6. Keigwin, L. D. Isotope paleoceanography of the Caribbean and east Pacific: Role of Panama uplift in late Neogene time. Science 217, 350–353 (1982)

    Article  ADS  CAS  Google Scholar 

  7. Gargett, A. E. Physical processes and the maintenance of nutrient-rich euphotic zones. Limnol. Oceanogr. 36, 1527–1545 (1991)

    Article  ADS  Google Scholar 

  8. Levitus, S. & Boyer, T.P. World Ocean Atlas 1994 Vol. 4 Temperature 129 (NOAA Atlas NESDIS, National Oceanographic Data Center, Silver Spring, USA, 1994).

  9. Wong, C. S., Whitney, F. A., Tsoy, I. & Bychkov, A. in Global Fluxes of Carbon and its Related Substances in the Coastal Sea–Atmosphere System (eds Tsunogai, S. et al.) 339–344 (Proc. 1994 Sapporo IGBP Symp., M&J International, Yokohama, Japan, 1995).

  10. Takahashi, K. Seasonal fluxes of pelagic diatoms in the subarctic Pacific, 1982–1983. Deep-Sea Res. 33, 1225–1251 (1986)

    Article  ADS  Google Scholar 

  11. Ohkouchi, N., Kawamura, K., Kawahata & Okada, H. Depth ranges of alkenone production in the central Pacific Ocean. Glob. Biogeochem. Cycles 13, 695–704 (1999)

    Article  ADS  CAS  Google Scholar 

  12. Pagani, M., Freeman, K. H., Ohkouchi, N. & Caldeira, K. Comparison of water column [CO2aq] with sedimentary alkenone-based estimates: A test of the alkeonone-CO2 proxy. Paleoceanography 17(4), doi:10.1029/2002PA000756 (2002)

  13. Sigman, D. M., Jaccard, S. & Haug, G. H. Polar ocean stratification in a cold climate. Nature 428, 59–63 (2004)

    Article  ADS  CAS  Google Scholar 

  14. Haug, G. H., Sigman, D. M., Tiedemann, R., Pedersen, T. F. & Sarnthein, M. Onset of permanent stratification in the subarctic Pacific Ocean. Nature 40, 779–782 (1999)

    Article  ADS  Google Scholar 

  15. Maslin, M. A. et al. Northwest Pacific Site 882: The initiation of Northern Hemisphere glaciation. Proc. ODP Sci. Res. 145, 315–333 (1995)

    Google Scholar 

  16. Shackleton, N. J. et al. Oxygen isotope calibration of the onset of ice-rafting and history of glaciation in the North Atlantic region. Nature 307, 620–623 (1984)

    Article  ADS  CAS  Google Scholar 

  17. Brassell, S. C., Eglinton, G., Marlowe, I. T., Pflaumann, U. & Sarnthein, M. Molecular stratigraphy: A new tool for climatic assessment. Nature 320, 129–133 (1986)

    Article  ADS  CAS  Google Scholar 

  18. Prahl, F. G. & Wakeham, S. G. Calibration of unsaturation patterns in long-chain ketone compositions for palaeotemperature assessment. Nature 330, 367–369 (1987)

    Article  ADS  CAS  Google Scholar 

  19. Müller, P. J., Kirst, G., Ruhland, G., von Stroch, I. & Rosell-Mele, A. Calibration of the alkenone paleotemperature index UK 37′ based on core-tops from the eastern South Atlantic and the global ocean (60°N-60°S). Geochim. Cosmochim. Acta 62, 1757–1772 (1998)

    Article  ADS  Google Scholar 

  20. Sachs, J. P. et al. Alkenones as paleoceanographic proxies. Geochem. Geophys. Geosyst. 1, 1–13 (2000)

    Article  Google Scholar 

  21. Volkman, J. K. Ecological and environmental factors affecting alkenone distributions in seawater and sediments. Geochem. Geophys. Geosyst. 1, 1–12 (2000)

    Article  Google Scholar 

  22. Bard, E. Comparison of alkenone estimates with other paleotemperature proxies. Geochem. Geophys. Geosyst. 2, 1–12 (2001)

    Article  ADS  Google Scholar 

  23. Rosell-Mele, A., Carter, J., Parry, A. & Eglinton, G. Novel procedure for the determination of the Uk 37′ in sediment samples. Anal. Chem. 67, 1283–1289 (1995)

    Article  CAS  Google Scholar 

  24. Grimalt, J. O. et al. Modification of the C37 alkenone and alkenoate composition in the water column and sediments: Possible implications for sea surface temperature estimates in paleoceanography. Geochem. Geophys. Geosyst. 1, 1–20 (2000)

    Article  Google Scholar 

  25. Prahl, F. G., Wolfe, G. V. & Sparrow, M. A. Physiological impacts on alkenone paleothermometry. Paleoceanography 18(1052), doi:10.1029/2002PA000853 (2003)

  26. Ohkouchi, N., Eglinton, T. I., Keigwin, L. D. & Hayes, J. M. Spatial and temporal offsets between proxy records in a sediment drift. Science 298, 1224–1227 (2002)

    Article  ADS  CAS  Google Scholar 

  27. Juillet-Leclerc, A. & Labeyrie, L. Temperature dependence of the oxygen isotope fractionation between diatom silica and water. Earth Planet. Sci. Lett. 84, 69–74 (1987)

    Article  ADS  Google Scholar 

  28. Shemesh, A., Charles, C. D. & Fairbanks, R. G. Oxygen isotopes in biogenic silica: global changes in ocean temperature and isotopic composition. Science 256, 1434–1436 (1992)

    Article  ADS  CAS  Google Scholar 

  29. Brandriss, M. E., O'Neil, J. R., Edlund, M. B. & Stoermer, E. F. Oxygen isotope fractionation between diatomaceous silica and water. Geochim. Cosmochim. Acta 62, 1119–1125 (1998)

    Article  ADS  CAS  Google Scholar 

  30. Koster, R. et al. Global sources of local precipitation as determined by the NASA/GISS GCM. Geophys. Res. Lett. 13, 121–124 (1986)

    Article  ADS  Google Scholar 

  31. Ganopolski, A., Rahmstorf, S., Petoukhov, V. & Claussen, M. Simulation of modern and glacial climates with a coupled global model of intermediate complexity. Nature 391, 351–356 (1998)

    Article  ADS  Google Scholar 

  32. Petoukhov, V. et al. CLIMBER-2: A climate system model of intermediate complexity. Part I: Model description and performance for present climate. Clim. Dyn. 16, 1–17 (2000)

    Article  Google Scholar 

  33. Broecker, W. S. Thermohaline circulation, the Achilles heel of our climate system: will man-made CO2 upset the current balance? Science 278, 1582–1588 (1997)

    Article  ADS  CAS  Google Scholar 

  34. Tiedemann, R., Sarnthein, M. & Shackleton, N. J. Astronomic timescale for the Pliocene Atlantic δ18O and dust flux records of ODP Site 659. Paleoceanography 9, 619–638 (1994)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank M. Sarnthein, H. Thierstein, M. Zhao and S. Honjo for discussions. J. Barron, J. Onodera and K. Takahashi provided insight on diatoms C. marginatus and C. radiatus and their seasonal fluxes in the North Pacific, and H. Sloane helped with the diatom δ18O analyses. We thank the Ocean Drilling Program (ODP) and the scientific party and crew of ODP Leg 145 for their efforts in the drilling of Site 882. This work was supported by the Deutsche Forschungsgemeinschaft (DFG), Schweizer Nationalfonds (SNF), the US National Science Foundation (NSF) and BP and the Ford Motor Company through the Princeton University Carbon Mitigation Initiative.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerald H. Haug.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Supplementary Information

Contains Supplementary Methods and Supplementary Figures 1, 2 and 3. (DOC 3411 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haug, G., Ganopolski, A., Sigman, D. et al. North Pacific seasonality and the glaciation of North America 2.7 million years ago. Nature 433, 821–825 (2005). https://doi.org/10.1038/nature03332

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature03332

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing