Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Neon isotopes constrain convection and volatile origin in the Earth's mantle

Abstract

Identifying the origin of primordial volatiles in the Earth's mantle provides a critical test between models that advocate magma-ocean equilibration with an early massive solar-nebula atmosphere and those that require subduction of volatiles implanted in late accreting material. Here we show that neon isotopes in the convecting mantle, resolved in magmatic CO2 well gases, are consistent with a volatile source related to solar corpuscular irradiation of accreting material. This contrasts with recent results that indicated a solar-nebula origin for neon in mantle plume material, which is thought to be sampling the deep mantle. Neon isotope heterogeneity in different mantle sources suggests that models in which the plume source supplies the convecting mantle with its volatile inventory require revision. Although higher than accepted noble gas concentrations in the convecting mantle may reduce the need for a deep mantle volatile flux, any such flux must be dominated by the neon (and helium) isotopic signature of late accreting material.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Study area.
Figure 2: Correlation of measured 21Ne/22Ne, 20Ne/22Ne with 4He/22Ne and 40Ar/22Ne.
Figure 3: Intersection of a two-component air+crust mixture with the MORB air–mantle mixing line defines the mantle Ne isotopic endmember.
Figure 4: Mantle noble gas isotopes relative to 36Ar normalized to the solar abundance, relative to 36Ar (Table 2).
Figure 5: Resolving endmember compositions from simple mixing.

Similar content being viewed by others

References

  1. Allègre, C. J., Staudacher, T., Sarda, P. & Kurz, M. Constraints on evolution of Earth's mantle from rare gas systematics. Nature 303, 762–766 (1983)

    Article  ADS  Google Scholar 

  2. Porcelli, D. & Ballentine, C. J. Models for the distribution of terrestrial noble gases and evolution of the atmosphere. Rev. Min. Geochem. 47, 411–480 (2002)

    Article  CAS  Google Scholar 

  3. Porcelli, D. & Wasserburg, G. J. Mass transfer of helium, neon, argon, and xenon through a steady-state upper mantle. Geochim. Cosmochim. Acta 59, 4921–4937 (1995)

    Article  ADS  CAS  Google Scholar 

  4. Hart, R., Dymond, J. & Hogan, L. Preferential formation of the atmosphere-sialic crust system from the upper mantle. Nature 278, 156–159 (1979)

    Article  ADS  CAS  Google Scholar 

  5. O'Nions, R. K. & Oxburgh, E. R. Heat and helium in the Earth. Nature 306, 429–431 (1983)

    Article  ADS  CAS  Google Scholar 

  6. Davies, G. F. & Richards, M. A. Mantle convection. J. Geol. 100, 151–206 (1992)

    Article  ADS  CAS  Google Scholar 

  7. Van der Hilst, R. D., Widiyantoro, S. & Engdahl, E. R. Evidence for deep mantle circulation from global tomography. Nature 386, 578–584 (1997)

    Article  ADS  CAS  Google Scholar 

  8. Van Keken, P. E. & Ballentine, C. J. Dynamical models of mantle volatile evolution and the role of phase transitions and temperature-dependent rheology. J. Geophys. Res. B 104, 7137–7151 (1999)

    Article  ADS  Google Scholar 

  9. Kellogg, L. H., Hager, B. H. & Van der Hilst, R. D. Compositional stratification in the deep mantle. Science 283, 1881–1884 (1999)

    Article  ADS  CAS  Google Scholar 

  10. Becker, T. W., Kellogg, J. B. & O'Connell, R. J. Thermal constraints on the survival of primitive blobs in the lower mantle. Earth Planet. Sci. Lett. 171, 351–365 (1999)

    Article  ADS  CAS  Google Scholar 

  11. Vidale, J. E., Schubert, G. & Earle, P. S. Unsuccessful initial search for a midmantle chemical boundary with seismic arrays. Geophys. Res. Lett. 28, 859–862 (2001)

    Article  ADS  Google Scholar 

  12. Bercovici, D. & Karato, S. Whole-mantle convection and the transition-zone water filter. Nature 425, 39–44 (2003)

    Article  ADS  CAS  Google Scholar 

  13. Wieler, R. Noble gases in the solar system. Rev. Min. Geochem. 47, 21–70 (2002)

    Article  CAS  Google Scholar 

  14. Kallenbach, R. et al. Isotopic composition of solar wind neon measured by CELIAS/MTOF on board SOHO. J. Geophys. Res. A 102, 26895–26904 (1997)

    Article  ADS  CAS  Google Scholar 

  15. Black, D. C. On the origin of trapped helium, neon, and argon isotopic variations in meteorites — I Gas-rich meteorites, lunar soil and breccia. Geochim. Cosmochim. Acta 36, 347–375 (1972)

    Article  ADS  CAS  Google Scholar 

  16. Trieloff, M., Kunz, J., Clague, D. A., Harrison, D. & Allègre, C. J. The nature of pristine noble gases in mantle plumes. Science 288, 1036–1038 (2000)

    Article  ADS  CAS  Google Scholar 

  17. Trieloff, M., Kunz, J. & Allègre, C. J. Noble gas systematics of the Réunion mantle plume source and the origin of primordial noble gases in Earth's mantle. Earth Planet. Sci. Lett. 200, 297–313 (2002)

    Article  ADS  CAS  Google Scholar 

  18. Ballentine, C. J., Porcelli, D. & Wieler, R. Technical comment on ‘Noble gases in mantle plumes’ by Trieloff et al. (2000) and reply. Science 291, 2269, doi:10.1126/science.291.5512.2269a (2001)

    Article  CAS  Google Scholar 

  19. Yokochi, R. & Marty, B. A determination of the neon isotopic composition of the deep mantle. Earth Planet. Sci. Lett. 225, 77–88 (2004)

    Article  ADS  CAS  Google Scholar 

  20. Sherwood Lollar, B., Ballentine, C. J. & O'Nions, R. K. The fate of mantle-derived carbon in a continental sedimentary basin: Integration of C/He relationships and stable isotope signatures. Geochim. Cosmochim. Acta 61, 2295–2307 (1997)

    Article  ADS  Google Scholar 

  21. Ballentine, C. J., Schoell, M., Coleman, D. & Cain, B. A. 300-Myr-old magmatic CO2 in natural gas reservoirs of the west Texas Permian basin. Nature 409, 327–331 (2001)

    Article  ADS  CAS  Google Scholar 

  22. Broadhead, R. F. Carbon dioxide in northeast New Mexico. West Tex. Geol. Soc. Bull. 32, 5–8 (1993)

    Google Scholar 

  23. Staudacher, T. Upper mantle origin for Harding County well gases. Nature 325, 605–607 (1987)

    Article  ADS  CAS  Google Scholar 

  24. Phinney, D., Tennyson, J. & Frick, U. Xenon in CO2 well gas revisited. J. Geophys. Res. B 83, 2313–2319 (1978)

    Article  ADS  CAS  Google Scholar 

  25. Caffee, M. W. et al. Primordial noble gases from Earth's mantle: Identification of a primitive volatile component. Science 285, 2115–2118 (1999)

    Article  CAS  Google Scholar 

  26. Ballentine, C. J. & Sherwood Lollar, B. Regional groundwater focusing of nitrogen and noble gases into the Hugoton-Panhandle giant gas field, USA. Geochim. Cosmochim. Acta 66, 2483–2497 (2002)

    Article  ADS  CAS  Google Scholar 

  27. Moreira, M., Kunz, J. & Allègre, C. J. Rare gas systematics in popping rock: isotopic and elemental compositions in the upper mantle. Science 279, 1178–1181 (1998)

    Article  ADS  CAS  Google Scholar 

  28. Reid, M. R. & Graham, D. W. Resolving lithospheric and sub-lithospheric contributions to helium isotope variations in basalts from the southwestern US. Earth Planet. Sci. Lett. 144, 213–222 (1996)

    Article  ADS  CAS  Google Scholar 

  29. Burnard, P., Graham, D. & Turner, G. Vesicle specific noble gas analyses of popping rock: Implications for primordial noble gases in Earth. Science 276, 568–571 (1997)

    Article  CAS  Google Scholar 

  30. Marty, B. & Humbert, F. Nitrogen and argon isotopes in oceanic basalts. Earth Planet. Sci. Lett. 152, 101–112 (1997)

    Article  ADS  CAS  Google Scholar 

  31. Ballentine, C. J. & Burnard, P. G. Production, release and transport of noble gases in the continental crust. Rev. Min. Geochem. 47, 481–538 (2002)

    Article  CAS  Google Scholar 

  32. Torgersen, T. & Kennedy, B. M. Air-Xe enrichments in Elk Hills oil field gases: role of water in migration and storage. Earth Planet. Sci. Lett. 167, 239–253 (1999)

    Article  ADS  CAS  Google Scholar 

  33. Kunz, J., Staudacher, T. & Allègre, C. J. Plutonium-fission xenon found in Earth's mantle. Science 280, 877–880 (1998)

    Article  ADS  CAS  Google Scholar 

  34. Honda, M. & McDougall, I. Primordial helium and neon in the Earth—a speculation on early degassing. Geophys. Res. Lett. 25, 1951–1954 (1998)

    Article  ADS  CAS  Google Scholar 

  35. Dixon, E. T., Honda, M., McDougall, I., Campbell, I. H. & Sigurdsson, I. Preservation of near-solar neon isotopic ratios in Icelandic basalts. Earth Planet. Sci. Lett. 180, 309–324 (2000)

    Article  ADS  CAS  Google Scholar 

  36. Moreira, M., Breddam, K., Curtice, J. & Kurz, M. D. Solar neon in the Icelandic mantle: new evidence for an undegassed lower mantle. Earth Planet. Sci. Lett. 185, 15–23 (2001)

    Article  ADS  CAS  Google Scholar 

  37. Harrison, D., Burnard, P. & Turner, G. Noble gas behaviour and composition in the mantle: constraints from the Iceland Plume. Earth Planet. Sci. Lett. 171, 199–207 (1999)

    Article  ADS  CAS  Google Scholar 

  38. Ballentine, C. J., van Keken, P. E., Porcelli, D. & Hauri, E. H. Numerical models, geochemistry and the zero paradox noble-gas mantle. Phil. Trans. R. Soc. Lond. A 360, 2611–2631 (2002)

    Article  ADS  CAS  Google Scholar 

  39. Saal, E. S., Hauri, E. H., Langmuir, C. H. & Perfit, M. R. Vapour undersaturation in primitive mid-ocean-ridge basalt and the volatile content of Earth's upper mantle. Nature 419, 451–455 (2002)

    Article  ADS  CAS  Google Scholar 

  40. Marty, B. & Tolstikhin, I. N. CO2 fluxes from mid-ocean ridges, arcs and plumes. Chem. Geol. 145, 233–248 (1998)

    Article  ADS  CAS  Google Scholar 

  41. Su, Y. & Langmuir, C. H. Global MORB Chemistry Compilation at the Segment Scale (Department of Earth and Environmental Sciences, Columbia University, 2003; available at 〈http://petdb.ldeo.columbia.edu/documentation/morbcompilation/〉.

  42. Wetherill, G. W. in Origin of the Moon (eds Hartmann, W. K., Phillips, R. J. & Taylor, G. J.) 519–555 (Oxford Univ. Press, Oxford, 1986)

    Google Scholar 

  43. Halliday, A. N., Wänke, H., Birck, J. L. & Clayton, R. N. The accretion, composition and early differentiation of Mars. Space Sci. Rev. 96, 1–34 (2001)

    Article  Google Scholar 

  44. Yin, Q. Z. et al. A short timescale for terrestrial planet formation from Hf-W chronometry of meteorites. Nature 418, 949–952 (2002)

    Article  ADS  CAS  Google Scholar 

  45. Kleine, T., Munker, C., Mezger, K. & Palme, H. Rapid accretion and early core formation on asteroids and the terrestrial planets from Hf-W chronometry. Nature 418, 952–955 (2002)

    Article  ADS  CAS  Google Scholar 

  46. Porcelli, D., Woolum, D. S. & Cassen, P. Deep Earth rare gases: initial inventories, capture from the solar nebula, and losses during Moon formation. Earth Planet. Sci. Lett. 193, 237–251 (2001)

    Article  ADS  CAS  Google Scholar 

  47. Porcelli, D. & Halliday, A. N. The core as a possible source of mantle helium. Earth Planet. Sci. Lett. 192, 45–56 (2001)

    Article  ADS  CAS  Google Scholar 

  48. Tolstikhin, I. & Hofmann, A. W. Early crust on top of the Earth's core. Phys. Earth Planet. Inter. (in the press)

  49. Ballentine, C. J. & O'Nions, R. K. The nature of mantle neon contributions to Vienna Basin hydrocarbon reservoirs. Earth Planet. Sci. Lett. 113, 553–567 (1992)

    Article  ADS  CAS  Google Scholar 

  50. Ott, U. Noble gases in meteorites—trapped components. Rev. Min. Geochem. 47, 71–100 (2002)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Access and permission to sample was by permission of BP (the field is now owned by Oxy) and the Bravo dome field manager, D. Holcomb. Sampling from the West Bush dome was by permission of Amerada Hess. H. Baur provided laboratory support. We thank F. Albarède, D. Porcelli, A. Halliday, A. Hofmann, C. Hall, J. Gilmour, G. Holland, D. Murphy, R. Yokochi and I. Tolstikhin for discussions and critical comments that have improved this Article. This work was funded by the Zurich ETH and NERC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chris J. Ballentine.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Supplementary Figure 1

A single figure showing the results of a chi-squared minimization, modeling the deviation of the best fit data wedge for a variety of model mantle Ne isotopic values. (PDF 34 kb)

Supplementary Data

Contains detail of the chi-squared test used to test the robustness of the Ne isotope intersect with the MORB-air line. Also contains equations for the planes defined by the data, and details of phase fractionation modelling to assess the limits of this form of fractionation process. Supplementary Figure Legend 1, and Supplementary Table 1 and Supplementary Table 2 are also included. (DOC 112 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ballentine, C., Marty, B., Sherwood Lollar, B. et al. Neon isotopes constrain convection and volatile origin in the Earth's mantle. Nature 433, 33–38 (2005). https://doi.org/10.1038/nature03182

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature03182

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing