Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A three-dimensional optical photonic crystal with designed point defects

Abstract

Photonic crystals1,2,3 offer unprecedented opportunities for miniaturization and integration of optical devices. They also exhibit a variety of new physical phenomena, including suppression or enhancement of spontaneous emission, low-threshold lasing, and quantum information processing4. Various techniques for the fabrication of three-dimensional (3D) photonic crystals—such as silicon micromachining5, wafer fusion bonding6, holographic lithography7, self-assembly8,9, angled-etching10, micromanipulation11, glancing-angle deposition12 and auto-cloning13,14—have been proposed and demonstrated with different levels of success. However, a critical step towards the fabrication of functional 3D devices, that is, the incorporation of microcavities or waveguides in a controllable way, has not been achieved at optical wavelengths. Here we present the fabrication of 3D photonic crystals that are particularly suited for optical device integration using a lithographic layer-by-layer approach15. Point-defect microcavities are introduced during the fabrication process and optical measurements show they have resonant signatures around telecommunications wavelengths (1.3–1.5 µm). Measurements of reflectance and transmittance at near-infrared are in good agreement with numerical simulations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic of the 3D PhC and its fabrication in silicon (Si).
Figure 2: Scanning-electron micrographs of the fabricated 3D PhCs.
Figure 3: FTIR-microscopy characterization of the 3D PhC with point defects.
Figure 4: Supercontinuum-light-source characterization of point-defect states.

Similar content being viewed by others

References

  1. Yablonovitch, E. Inhibited spontaneous emission in solid-state physics and electronics. Phys. Rev. Lett. 58, 2059–2062 (1987)

    Article  ADS  CAS  Google Scholar 

  2. John, S. Strong localization of photons in certain disordered dielectric superlattices. Phys. Rev. Lett. 58, 2486–2489 (1987)

    Article  ADS  CAS  Google Scholar 

  3. Joannopoulos, J. D., Meade, R. D. & Winn, J. N. Photonic Crystals (Princeton Press, Princeton, New Jersey, 1995)

    MATH  Google Scholar 

  4. Joannopoulos, J. D., Villeneuve, P. R. & Fan, S. Photonic crystals: putting a new twist on light. Nature 386, 143–149 (1997)

    Article  ADS  CAS  Google Scholar 

  5. Fleming, J. G. & Lin, S. Y. Three-dimensional photonic crystal with a stop band from 1.35 to 1.95 µm. Opt. Lett. 24, 49–51 (1999)

    Article  ADS  CAS  Google Scholar 

  6. Noda, S., Tomoda, K., Yamamoto, N. & Chutinan, A. Full three-dimensional photonic bandgap crystals at near-infrared wavelengths. Science 289, 604–606 (2000)

    Article  ADS  CAS  Google Scholar 

  7. Campbell, M., Sharp, D. N., Harrison, M. T., Denning, R. G. & Turberfield, A. J. Fabrication of photonic crystals for the visible spectrum by holographic lithography. Nature 404, 53–56 (2000)

    Article  ADS  CAS  Google Scholar 

  8. Vlasov, Y. A., Bo, X. Z., Sturm, J. C. & Norris, D. J. On-chip natural assembly of silicon photonic bandgap crystals. Nature 414, 289–293 (2001)

    Article  ADS  CAS  Google Scholar 

  9. Blanco, A. et al. Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres. Nature 405, 437–440 (2000)

    Article  ADS  CAS  Google Scholar 

  10. Cheng, C. C. & Scherer, A. Fabrication of photonic band-gap crystals. J. Vac. Sci. Technol. B 13, 2696–2700 (1995)

    Article  ADS  CAS  Google Scholar 

  11. Aoki, K. et al. Three-dimensional photonic crystals for optical wavelengths assembled by micromanipulation. Appl. Phys. Lett. 81, 3122–3124 (2002)

    Article  ADS  CAS  Google Scholar 

  12. Kennedy, S. R., Brett, M. J., Toader, O. & John, S. Fabrication of tetragonal square spiral photonic crystals. Nano Lett. 2, 59–62 (2002)

    Article  ADS  CAS  Google Scholar 

  13. Kuramochi, E. et al. A new fabrication technique for photonic crystals: nanolithography combined with alternating-layer deposition. Opt. Quant. Elec. 34, 53–61 (2002)

    Article  CAS  Google Scholar 

  14. Sato, T. et al. Photonic crystals for the visible range fabricated by autocloning technique and their application. Opt. Quant. Elec. 34, 63–70 (2002)

    Article  MathSciNet  CAS  Google Scholar 

  15. Johnson, S. G. & Joannopoulos, J. D. Three-dimensional periodic dielectric layered structure with omnidirectional photonic band gap. Appl. Phys. Lett. 77, 3490–3492 (2000)

    Article  ADS  CAS  Google Scholar 

  16. Povinelli, M. L., Johnson, S. G., Fan, S. & Joannopoulos, J. D. Emulation of two-dimensional photonic crystal defect modes in a photonic crystal with a three-dimensional photonic band gap. Phys. Rev. B 64, 075313 (2001)

    Article  ADS  Google Scholar 

  17. Lidorikis, E., Povinelli, M. L., Johnson, S. G. & Joannopoulos, J. D. Polarization-independent linear waveguides in 3D photonic crystals. Phys. Rev. Lett. 91, 023902 (2003)

    Article  ADS  CAS  Google Scholar 

  18. Johnson, S. G. & Joannopoulos, J. D. Block-iterative frequency-domain methods for Maxwell's equations in a planewave basis. Opt. Express 8, 173–190 (2001)

    Article  ADS  CAS  Google Scholar 

  19. Kunz, K. S. & Luebbers, R. J. The Finite-Difference Time-Domain Methods (CRC, Boca Raton, Florida, 1993)

    Google Scholar 

  20. Sting, D. W. & Messerschmidt, R. G. Reflective beam splitting objective. US patent 4,653,880 (1987).

  21. Nicholson, J. W. et al. All-fiber, octave-spanning supercontinuum. Opt. Lett. 28, 643–645 (2003)

    Article  ADS  CAS  Google Scholar 

  22. Savas, T. A., Schattenburg, M. L., Carter, J. M. & Smith, H. I. Large-area achromatic interferometric lithography for 100 nm period gratings and grids. J. Vac. Sci. Technol. B 14, 4167–4170 (1996)

    Article  CAS  Google Scholar 

  23. Qi, M. & Smith, H. I. Achieving nanometer-scale, controllable pattern shifts in x-ray lithography using an assembly-tilting technique. J. Vac. Sci. Technol. B 20, 2991–2994 (2002)

    Article  CAS  Google Scholar 

  24. Chou, S. Y., Krauss, P. R. & Renstrom, P. J. Imprint lithography with 25-nanometer resolution. Science 272, 85–87 (1996)

    Article  ADS  CAS  Google Scholar 

  25. Boegli, V. & Kern, D. P. Automatic mark detection in electron beam nanolithography using digital image processing and correlation. J. Vac. Sci. Technol. B 8, 1994–2001 (1990)

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank M. Mondol and J. Daley for experimental assistance, and M. Povinelli for helpful discussions. The work was supported in part by a grant from the Materials Research Science and Engineering Center program of the National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minghao Qi.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Supplementary Figure 1

Showing what the hole layer and rod layer look like in order to achieve a 25% 3D photonic band gap in the new 3D photonic crystal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qi, M., Lidorikis, E., Rakich, P. et al. A three-dimensional optical photonic crystal with designed point defects. Nature 429, 538–542 (2004). https://doi.org/10.1038/nature02575

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature02575

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing