Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Electric polarization reversal and memory in a multiferroic material induced by magnetic fields

Abstract

Ferroelectric and magnetic materials are a time-honoured subject of study and have led to some of the most important technological advances to date. Magnetism and ferroelectricity are involved with local spins and off-centre structural distortions, respectively. These two seemingly unrelated phenomena can coexist in certain unusual materials, termed multiferroics1,2,3,4,5,6,7,8,9,10,11. Despite the possible coexistence of ferroelectricity and magnetism, a pronounced interplay between these properties has rarely been observed6,12. This has prevented the realization of multiferroic devices offering such functionality13. Here, we report a striking interplay between ferroelectricity and magnetism in the multiferroic TbMn2O5, demonstrated by a highly reproducible electric polarization reversal and permanent polarization imprint that are both actuated by an applied magnetic field. Our results point to new device applications such as magnetically recorded ferroelectric memory.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Coupled dielectric and magnetic properties at phase transitions.
Figure 2: Magnetic-field dependence of ferroelectricity and memory effect.
Figure 3: Reproducible polarization reversal by magnetic fields.

Similar content being viewed by others

References

  1. Smolenski, G. A. & Chupis, I. E. Ferroelectromagnets. Usp. Fiz. Nauk. 137, 415–448 (1982); Sov. Phys. Usp. 25, 475–493 (1982)

    Article  Google Scholar 

  2. Schmid, H. Multi-ferroic magnetoelectrics. Ferroelectrics 162, 317–338 (1994)

    Article  Google Scholar 

  3. Wang, J. et al. Epitaxial BiFeO3 multiferroic thin film heterostructures. Science 299, 1719–1722 (2003)

    Article  CAS  ADS  Google Scholar 

  4. Smolenskii, G. A., Yudin, V. M., Sher, E. S. & Stolypin, Yu. E. Antiferromagnetic properties of some perovskites. Sov. Phys. JETP 16, 622–624 (1963)

    ADS  Google Scholar 

  5. Kimura, T. et al. Magnetocapacitance effect in multiferroic BiMnO3 . Phys. Rev. B 67, 180401 (2003)

    Article  ADS  Google Scholar 

  6. Ascher, E., Rieder, H., Schmid, H. & Stössel, H. Some properties of ferromagnetoelectric nickel-iodine boracite, Ni3B7O13I. J. Appl. Phys. 37, 1404–1405 (1966)

    Article  CAS  ADS  Google Scholar 

  7. Baturov, L. N., Al'shin, B. I. & Yarmukhamedov, Yu. N. Nonlinear magnetoelectric and dielectric properties of Ni-I boracite. Fiz. Tverd. Tela 20, 2254–2259 (1978); Sov. Phys. Solid State 20, 1300–1303 (1978)

    CAS  Google Scholar 

  8. Scott, J. F. Phase transitions in BaMnF4 . Rep. Prog. Phys. 12, 1056–1084 (1979)

    Google Scholar 

  9. Katsufuji, T. et al. Dielectric and magnetic anomalies and spin frustration in hexagonal RMnO3 (R = Y, Yb, and Lu). Phys. Rev. B 64, 104419 (2001)

    Article  ADS  Google Scholar 

  10. Fiebig, M., Lottermoser, Th., Fröhlich, D., Goltsev, A. V. & Pisarev, R. V. Observation of coupled magnetic and electric domains. Nature 419, 818–820 (2002)

    Article  CAS  ADS  Google Scholar 

  11. Ponomarev, B. K., Ivanov, S. A., Popov, Yu. F., Negrii, V. D. & Red'kin, B. S. Magnetoelectric properties of some rare earth molybdates. Ferroelectrics 161, 43–48 (1994)

    Article  CAS  Google Scholar 

  12. Kimura, T. et al. Magnetic control of ferroelectric polarization. Nature 426, 55–58 (2003)

    Article  CAS  ADS  Google Scholar 

  13. Hill, N. A. Why are there so few magnetic ferroelectrics? J. Phys. Chem. B 104, 6694–6709 (2000)

    Article  CAS  Google Scholar 

  14. Rivera, J.-P. On definitions, units, measurements, tensor forms of the linear magnetoelectric effect and on a new dynamic method applied to Cr-Cl boracite. Ferroelectrics 161, 165–180 (1994)

    Article  CAS  Google Scholar 

  15. Schmid, H. On a magnetoelectric classification of materials. Int. J. Magn. 4, 337–361 (1973)

    CAS  Google Scholar 

  16. Popov, Yu. F. et al. Low-temperature phase transition in EuMn2O5 . Physica B 284–288, 1402–1403 (2000)

    Article  ADS  Google Scholar 

  17. Popov, Yu. F. et al. Features of the magnetoelectric properties of BiFeO3 in high magnetic fields. J. Low-Temp. Phys. 27, 478–479 (2001)

    Article  CAS  Google Scholar 

  18. Saito, K. & Kohn, K. Magnetoelectric effect and low-temperature phase transitions of TbMn2O5 . J. Phys. Condens. Matter 7, 2855–2863 (1995)

    Article  CAS  ADS  Google Scholar 

  19. Golovenchits, E. I., Morozov, N. V., Sanina, V. A. & Sapozhnikova, L. M. Correlation of magnetic and dielectric properties in EuMn2O5 single crystals. Sov. Phys. Solid State 34, 56–59 (1992)

    Google Scholar 

  20. Goshen, S., Mukamel, D., Shaked, H. & Shtrikman, S. Magnetic symmetry and ferroelectricity induced by antiferromagnetic transitions. J. Appl. Phys. 40, 1590–1592 (1969)

    Article  CAS  ADS  Google Scholar 

  21. Buisson, G. Structures magnétiques sinusoïdales et hélicoïdales de la terre rare dans TMn2O5 . Phys. Status Solidi A 17, 191–198 (1973)

    Article  CAS  ADS  Google Scholar 

  22. Gardner, P. P., Wilkinson, C., Forsyth, J. B. & Wanklyn, B. M. The magnetic structures of the rare-earth manganates ErMn2O5 and TbMn2O5 . J. Phys. C 21, 5653–5661 (1998)

    Article  ADS  Google Scholar 

  23. Inomata, A. & Kohn, K. Pyroelectric effect and possible ferroelectric transition of helimagnetic GdMn2O5, TbMn2O5 and YMn2O5 . J. Phys. Condens. Matter 8, 2673–2678 (1996)

    Article  CAS  ADS  Google Scholar 

  24. Sawada, A., Ohya, S., Ishibashi, Y. & Takagi, Y. Ferroelectric phase transition in (NH4)2SO4-K2SO4 mixed crystals. J. Phys. Soc. Jpn 38, 1408–1414 (1975)

    Article  CAS  ADS  Google Scholar 

  25. Sawada, A. & Tomatsu, M. Ferrielectric behaviors in Li2Ge7O15 crystals. Ferroelectrics 137, 297–302 (1992)

    Article  CAS  Google Scholar 

  26. Maisonneuve, V., Cajipe, V. B., Simon, A., Von Der Muhll, R. & Ravez, J. Ferrielectric ordering in lamellar CuInP2S6 . Phys. Rev. B 56, 10860–10868 (1997)

    Article  CAS  ADS  Google Scholar 

  27. Nakamura, N. & Kohn, K. Magnetoelectric effect of rare earth manganese RMn2O5 . Ferroelectrics 204, 107–114 (1997)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science Foundation-MRSEC, and J.S.A. was primarily supported by the Korea Science and Engineering Foundation through the Center for Strongly Correlated Materials Research, Seoul National University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Hur.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hur, N., Park, S., Sharma, P. et al. Electric polarization reversal and memory in a multiferroic material induced by magnetic fields. Nature 429, 392–395 (2004). https://doi.org/10.1038/nature02572

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature02572

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing