Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The path to ubiquitous and low-cost organic electronic appliances on plastic

Abstract

Organic electronics are beginning to make significant inroads into the commercial world, and if the field continues to progress at its current, rapid pace, electronics based on organic thin-film materials will soon become a mainstay of our technological existence. Already products based on active thin-film organic devices are in the market place, most notably the displays of several mobile electronic appliances. Yet the future holds even greater promise for this technology, with an entirely new generation of ultralow-cost, lightweight and even flexible electronic devices in the offing, which will perform functions traditionally accomplished using much more expensive components based on conventional semiconductor materials such as silicon.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Various types of organic electronic materials, ranged in order of increasing complexity from left (simplest) to right (most complex).
Figure 2: Ink-jet printing and the fabrication of full-colour polymer organic light-emitting device (OLED) displays.
Figure 3: Organic emissive displays in the present and the future.
Figure 4: The process of organic vapour-phase deposition (OVPD) for the growth of organic electronic devices.
Figure 5: Laser-induced thermal imaging transfer of active organic semiconductor materials to a substrate.
Figure 6: Direct micro/nanopatterning of an organic electronic device by cold welding.
Figure 7: Conceptual diagram of continuous and very-low-cost manufacture of organic electronic devices.

Similar content being viewed by others

References

  1. Vaeth, K. M. OLED-display technology. Inform. Display 19, 12–17 (2003)

    Google Scholar 

  2. Lin, Y. Y., Gundlach, D. J., Nelson, S. F. & Jackson, T. N. in 55th Annu. Dev. Res. Conf. 60 (Electron Device Society, Ft Collins, Colorado, 1997)

    Google Scholar 

  3. Gundlach, D. J., Lin, Y. Y. & Jackson, T. N. Pentacene organic thin film transistors—molecular ordering and mobility. IEEE Electron. Dev. Lett. 18, 87–89 (1997)

    Article  ADS  CAS  Google Scholar 

  4. Shtein, M., Mapel, J., Benziger, J. B. & Forrest, S. R. Effects of film morphology and gate dielectric surface preparation on the electrical characteristics of organic vapor phase deposited pentacene thin-film transistors. Appl. Phys. Lett. 81, 268–270 (2002)

    Article  ADS  CAS  Google Scholar 

  5. Peumans, P. & Forrest, S. R. Very high efficiency double heterostructure copper phthalocyanine/C60 photovoltaic cells. Appl. Phys. Lett. 79, 126–128 (2001)

    Article  ADS  CAS  Google Scholar 

  6. Granstrom, M. et al. Laminated fabrication of polymeric photovoltaic diodes. Nature 395, 257–260 (1998)

    Article  ADS  CAS  Google Scholar 

  7. Peumans, P., Uchida, S. & Forrest, S. R. Efficient bulk heterojunction photovoltaic cells based on small molecular weight organic thin films. Nature 425, 158–162 (2003)

    Article  ADS  CAS  Google Scholar 

  8. Shaheen, S. E. et al. 2.5% efficient organic plastic solar cells. Appl. Phys. Lett. 78, 841–843 (2001)

    Article  ADS  CAS  Google Scholar 

  9. Baldo, M. A. et al. High efficiency phosphorescent emission from organic electroluminescent devices. Nature 395, 151–154 (1998)

    Article  ADS  CAS  Google Scholar 

  10. Anthopoulos, T. D. et al. Highly efficient single-layer dendrimer light-emitting diodes with balanced charge transport. Appl. Phys. Lett. 82, 4824–4826 (2003)

    Article  ADS  CAS  Google Scholar 

  11. Ma, D. G. et al. Bright electroluminescence from a new conjugated dendrimer. Synth. Met. 137, 1125–1126 (2003)

    Article  CAS  Google Scholar 

  12. Lee, C.-L., Lee, K. B. & Kim, J.-J. Polymer phosphorescent light emitting devices doped with tris(2-phenylpyridine) iridium as a triplet emitter. Appl. Phys. Lett. 77, 2280–2282 (2000)

    Article  ADS  CAS  Google Scholar 

  13. Burroughes, J. H. et al. Light-emitting diodes based on conjugated polymers. Nature 347, 539–541 (1990)

    Article  ADS  CAS  Google Scholar 

  14. Braun, D. & Heeger, A. J. Visible light emission from semiconducting polymer diodes. Appl. Phys. Lett. 58, 1982–1984 (1991)

    Article  ADS  CAS  Google Scholar 

  15. Greenbaum, E., Blankinship, S. L., Lee, J. W. & Ford, R. M. Solar photobiochemistry: Simultaneous photoproduction of hydrogen and oxygen in a confined bioreactor. J. Phys. Chem. B 105, 3605–3609 (2001)

    Article  CAS  Google Scholar 

  16. Greenbaum, E., Lee, I. & Lee, J. W. Functional 3D nanoscale imaging of a single-molecule photovoltaic structure. Biophys. J. Part 2 82, 206–207 (2002)

    Article  Google Scholar 

  17. Pope, M. & Swenberg, C. E. Electronic Processes in Organic Crystals (Clarendon, Oxford, 1982)

    Google Scholar 

  18. Silinsh, E. A. in Organic Molecular Crystals (ed. Queisser, H.-J.) Ch. 1 (Springer, Berlin, 1980)

    Book  Google Scholar 

  19. Sze, S. M. Physics of Semiconductor Devices (John Wiley, New York, 1981)

    Google Scholar 

  20. Warta, W., Stehle, R. & Karl, N. Ultrapure, high mobility organic photoconductors. Appl. Phys. A 36, 163–170 (1985)

    Article  ADS  Google Scholar 

  21. Karl, N. Studies of organic semiconductors for 40 years. III. Mol. Cryst. Liq. Cryst. 171, 31–51 (1989)

    Google Scholar 

  22. Forrest, S. R., Kaplan, M. L. & Schmidt, P. H. Organic-on-inorganic semiconductor contact barrier diodes. II. Dependence on organic film and metal contact properties. J. Appl. Phys. 56, 543–551 (1984)

    Article  ADS  CAS  Google Scholar 

  23. Campbell, A. J., Bradley, D. D. C. & Antoniadis, H. Dispersive electron transport in an electroluminescent polyfluorene copolymer measured by the current integration time-of-flight method. Appl. Phys. Lett. 79, 2133–2135 (2001)

    Article  ADS  CAS  Google Scholar 

  24. Blom, P. W. M., de Jong, M. J. M. & vanMunster, M. G. Electric-field and temperature dependence of the hole mobility in poly(p-phenylene vinylene). Phys. Rev. B 55, R656–R659 (1997)

    Article  ADS  CAS  Google Scholar 

  25. Bulovic, V., Burrows, P. E. & Forrest, S. R. in Electroluminescence I (ed. Mueller, G.) 262 (Academic, New York, 2000)

    Google Scholar 

  26. Sirringhaus, H. et al. Mobility enhancement in conjugated polymer field-effect transistors through chain alignment in a liquid-crystalline phase. Appl. Phys. Lett. 77, 406–408 (2000)

    Article  ADS  CAS  Google Scholar 

  27. Forrest, S. R. Ultrathin organic films grown by organic molecular beam deposition and related techniques. Chem. Rev. 97, 1793–1896 (1997)

    Article  CAS  Google Scholar 

  28. van de Craats, A. M. et al. Meso-epitaxial solution-growth of self organizing discotic liquid-crystalline semiconductors. Adv. Mat. 15, 495–499 (2003)

    Article  CAS  Google Scholar 

  29. Burrows, P. E. & Forrest, S. R. Electroluminescence from trap-limited current transport in vacuum deposited organic light emitting devices. Appl. Phys. Lett. 64, 2285–2287 (1994)

    Article  ADS  CAS  Google Scholar 

  30. Parker, I. D. Carrier tunneling and device characteristics in polymer light emitting diodes. J. Appl. Phys. 75, 1656–1666 (1994)

    Article  ADS  CAS  Google Scholar 

  31. Gelinck, G. H., Geuns, T. C. T. & de Leeuw, D. M. High-performance all-polymer integrated circuits. Appl. Phys. Lett. 77, 1487–1489 (2000)

    Article  ADS  CAS  Google Scholar 

  32. Drury, C. J., Mutsaers, C. M. J., Hart, C. M., Matters, M. & de Leeuw, D. M. Low-cost all-polymer integrated circuits. Appl. Phys. Lett. 73, 108–110 (1998)

    Article  ADS  CAS  Google Scholar 

  33. Peumans, P., Bulovic, V. & Forrest, S. R. Efficient, high-bandwidth organic multilayer photodetectors. Appl. Phys. Lett. 76, 3855–3857 (2000)

    Article  ADS  CAS  Google Scholar 

  34. Stutzmann, N., Friend, R. H. & Sirringhaus, H. Self-aligned vertical-channel polymer field effect transistors. Science 299, 1881–1884 (2003)

    Article  ADS  CAS  Google Scholar 

  35. Kitaigorodsky, A. I. Molecular Crystals and Molecules (Academic, New York, 1973)

    Google Scholar 

  36. Werner, A. G. et al. Pyronin B as a donor for n-type doping of organic thin films. Appl. Phys. Lett. 82, 4495–4497 (2003)

    Article  ADS  CAS  Google Scholar 

  37. Fukase, A. & Kido, J. Organic electroluminescent devices having self-doped cathode interface layer. Jpn. J. Appl. Phys. 2 41, L334–L336 (2002)

    Article  CAS  Google Scholar 

  38. Kido, J. & Matsumoto, T. Bright organic electroluminescent devices having a metal-doped electron-injecting layer. Appl. Phys. Lett. 73, 2866–2868 (1998)

    Article  ADS  CAS  Google Scholar 

  39. Endo, J., Matsumoto, T. & Kido, J. Organic electroluminescent devices with a vacuum-deposited Lewis-acid-doped hole-injecting layer. Jpn. J. Appl. Phys. 2 41, L358–L360 (2002)

    Article  CAS  Google Scholar 

  40. Gao, W. & Kahn, A. Controlled p-type doping of an organic molecular semiconductor. Appl. Phys. Lett. 79, 4040–4042 (2001)

    Article  ADS  CAS  Google Scholar 

  41. Pfeiffer, M., Forrest, S. R., Leo, K. & Thompson, M. E. Electrophosphorescent p-i-n organic light emitting devices for very high efficiency flat panel displays. Adv. Mater. 14, 1633–1636 (2002)

    Article  CAS  Google Scholar 

  42. Do, L. M. et al. Observation of degradation processes of Al electrodes in organic electroluminescence devices by electroluminescence microscopy, atomic force microscopy, scanning electron microscopy and Auger electron spectroscopy. J. Appl. Phys. 76, 5118–5121 (1994)

    Article  ADS  CAS  Google Scholar 

  43. Aziz, H. et al. Degradation processes at the cathode/organic interface in organic light emitting devices with Mg:Ag cathodes. Appl. Phys. Lett. 72, 2642–2644 (1998)

    Article  ADS  CAS  Google Scholar 

  44. Burrows, P. E. et al. Reliability and degradation of organic light emitting devices. Appl. Phys. Lett. 65, 2922–2924 (1994)

    Article  ADS  CAS  Google Scholar 

  45. Kwong, R. C. et al. High operational stability of electrophosphorescent devices. Appl. Phys. Lett. 81, 162–164 (2002)

    Article  ADS  CAS  Google Scholar 

  46. Xu, G. Fighting OLED degradation. Inform. Display 19, 18–21 (2003)

    Google Scholar 

  47. Gutmann, F. & Lyon, L. E. Organic Semiconductors Part A (R. E. Krieger Publishing, Malabar, Florida, 1981)

    Google Scholar 

  48. Wu, C. C., Sturm, J. C., Register, R. A. & Thompson, M. E. Integrated three color organic light emitting devices. Appl. Phys. Lett. 69, 3117–3119 (1996)

    Article  ADS  CAS  Google Scholar 

  49. Jiang, X. Z. et al. Effect of carbazole-oxadiazole excited-state complexes on the efficiency of dye-doped light-emitting diodes. J. Appl. Phys. 91, 6717–6724 (2002)

    Article  ADS  CAS  Google Scholar 

  50. Gu, G. & Forrest, S. R. Design of flat panel displays based on organic light emitting devices. IEEE J. Sel. Top. Quant. Electron. 4, 83–99 (1998)

    Article  ADS  CAS  Google Scholar 

  51. Hebner, T. R. & Sturm, J. C. Local tuning of organic light-emitting diode color by dye droplet application. Appl. Phys. Lett. 73, 1775–1777 (1998)

    Article  ADS  CAS  Google Scholar 

  52. Sirringhaus, H. et al. High-resolution inkjet printing of all-polymer transistor circuits. Science 290, 2123–2126 (2000)

    Article  ADS  CAS  Google Scholar 

  53. Shimoda, T., Morii, K., Seki, S. & Kiguchi, H. Inkjet printing of light-emitting polymer displays. Mater. Res. Soc. Bull. 28, 821–827 (2003)

    Article  CAS  Google Scholar 

  54. Hebner, T. R., Wu, C. C., Marcy, D., Lu, M. H. & Sturm, J. C. Ink-jet printing of doped polymers for organic light emitting devices. Appl. Phys. Lett. 72, 519–521 (1998)

    Article  ADS  CAS  Google Scholar 

  55. Gustafsson, G. et al. Flexible light-emitting diodes made from soluble conducting polymers. Nature 357, 477–479 (1992)

    Article  ADS  CAS  Google Scholar 

  56. Gu, G., Burrows, P. E., Venkatesh, S., Forrest, S. R. & Thompson, M. E. Vacuum-deposited, non-polymeric flexible organic light emitting devices. Opt. Lett. 22, 175–177 (1997)

    Article  ADS  Google Scholar 

  57. Burrows, P. E. et al. Organic vapor phase deposition: a new method for the growth of organic thin films with large optical nonlinearities. J. Cryst. Growth 156, 91–98 (1995)

    Article  ADS  CAS  Google Scholar 

  58. Shtein, M., Gossenberger, H. F., Benziger, J. B. & Forrest, S. R. Material transport regimes and mechanisms for growth of molecular organic thin films using low-pressure organic vapor phase deposition. J. Appl. Phys. 89, 1470–1476 (2001)

    Article  ADS  CAS  Google Scholar 

  59. Shtein, M., Peumans, P., Benziger, J. B. & Forrest, S. R. Micropatterning of organic thin films for device applications using organic vapor phase deposition. J. Appl. Phys. 93, 4005–4016 (2003)

    Article  ADS  CAS  Google Scholar 

  60. Shtein, M., Peumans, P., Benziger, J. & Forrest, S. R. . Direct, mask- and solvent-free printing of molecular organic semiconductors. Adv. Mater. (in the press)

  61. Karnakis, D. M., Lippert, T., Ichinose, N., Kawanishi, S. & Fukumura, H. Laser induced molecular transfer using ablation of a triazeno-polymer. Appl. Surf. Sci. 127–129, 781–786 (1998)

    Article  ADS  Google Scholar 

  62. Blanchet, G. B., Loo, Y.-L., Rogers, J. A., Gao, F. & Fincher, C. R. Large area, high resolution dry printing of conducting polymers for organic electronics. Appl. Phys. Lett. 82, 463–465 (2003)

    Article  ADS  CAS  Google Scholar 

  63. Suh, M. C., Chin, B. D., Kim, M.-H., Kang, T. M. & Lee, S. T. Enhanced luminance of blue light-emitting polymers by blending with hole transporting materials. Adv. Mater. 15, 1254–1258 (2003)

    Article  CAS  Google Scholar 

  64. Wang, J., Sun, X., Chen, L. & Chou, S. Y. Direct nanoimprint of submicron organic light-emitting structures. Appl. Phys. Lett. 75, 2767–2769 (1999)

    Article  ADS  CAS  Google Scholar 

  65. Chou, S. Y., Zhuang, L. & Guo, L. Lithographically induced self-construction of polymer microstructures for resistless patterning. Appl. Phys. Lett. 75, 1004–1006 (1999)

    Article  ADS  CAS  Google Scholar 

  66. Stutzmann, N., Tervoort, T. A., Bastiaansen, K. & Smith, P. Patterning of polymer-supported metal films by microcutting. Nature 407, 613–616 (2000)

    Article  ADS  CAS  Google Scholar 

  67. Zaumseil, J. et al. Nanoscale organic transistors that use source/drain electrodes supported by high resolution rubber stamps. Appl. Phys. Lett. 82, 793–795 (2003)

    Article  ADS  CAS  Google Scholar 

  68. Kim, C. & Forrest, S. R. Fabrication of organic light-emitting devices by low pressure cold welding. Adv. Mater. 15, 541–545 (2003)

    Article  CAS  Google Scholar 

  69. Kim, C., Burrows, P. E. & Forrest, S. R. Micropatterning of organic electronic devices by cold-welding. Science 288, 831–833 (2000)

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

The author is indebted to his many students, and in particular M. Thompson, for many discussions over the years. He is also grateful to the Air Force Office of Scientific Research, the Defense Advanced Research Projects Agency, the National Science Foundation and Universal Display Corporation for their financial support of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen R. Forrest.

Ethics declarations

Competing interests

The author declares that he has no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Forrest, S. The path to ubiquitous and low-cost organic electronic appliances on plastic. Nature 428, 911–918 (2004). https://doi.org/10.1038/nature02498

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature02498

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing