Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The star-formation history of the Universe from the stellar populations of nearby galaxies

Abstract

The determination of the star-formation history of the Universe is a key goal of modern cosmology, as it is crucial to our understanding of how galactic structures form and evolve. Observations1,2,3,4,5,6,7,8,9,10,11,12 of young stars in distant galaxies at different times in the past have indicated that the stellar birthrate peaked some eight billion years ago before declining by a factor of around ten to its present value. Here we report an analysis of the ‘fossil record’ of the current stellar populations of 96,545 nearby galaxies, from which we obtained a complete star-formation history. Our results broadly support those derived from high-redshift galaxies. We find, however, that the peak of star formation was more recent—around five billion years ago. We also show that the bigger the stellar mass of the galaxy, the earlier the stars were formed, which indicates that high- and low-mass galaxies have very different histories.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The star-formation history of the Universe.
Figure 2: The star-formation rate as a function of the observed stellar mass of the galaxy.

References

  1. Gallego, J., Zamorano, J., Aragon-Salamanca, A. & Rego, M. The current star formation rate of the local Universe. Astrophys. J. Lett. 455, 1–4 (1995)

    Article  ADS  Google Scholar 

  2. Lilly, S. J., Le Fevre, O., Hammer, F. & Crampton, D. The Canada-France redshift survey: The luminosity density and star formation history of the Universe to z 1. Astrophys. J. Lett. 460, 1–4 (1996)

    Article  ADS  Google Scholar 

  3. Steidel, C. C., Giavalisco, M., Pettini, M., Dickinson, M. & Adelberger, K. L. Spectroscopic confirmation of a population of normal star-forming galaxies at redshifts z > 3. Astrophys. J. Lett. 462, 17–21 (1996)

    Article  ADS  Google Scholar 

  4. Connolly, A. J., Szalay, A. S., Dickinson, M., Subbarao, M. U. & Brunner, R. J. The evolution of the global star formation history as measured from the Hubble Deep Field. Astrophys. J. Lett. 486, 11–14 (1997)

    Article  ADS  Google Scholar 

  5. Tresse, L. & Maddox, S. J. The luminosity function and star formation rate at z 0.2. Astrophys. J. 495, 691–697 (1998)

    Article  ADS  CAS  Google Scholar 

  6. Glazebrook, K., Blake, C., Economou, F., Lilly, S. & Colless, M. Measurement of the star formation rate from in field galaxies at z = 1. Mon. Not. R. Astron. Soc. 306, 843–856 (1999)

    Article  ADS  CAS  Google Scholar 

  7. Cowie, L., Songaila, A. & Barger, A. J. Evidence for a gradual decline in the universal rest-frame ultraviolet luminosity density for z < 1. Astron. J. 117, 2656–2665 (1999)

    Article  ADS  Google Scholar 

  8. Sullivan, M. et al. An ultraviolet-selected galaxy redshift survey—II. The physical nature of star formation in an enlarged sample. Mon. Not. R. Astron. Soc. 312, 442–464 (2000)

    Article  ADS  CAS  Google Scholar 

  9. Scott, S. et al. The SCUBA 8-mJy survey: I—Sub-mm maps, sources and source counts. Mon. Not. R. Astron. Soc. 331, 817–838 (2002)

    Article  ADS  Google Scholar 

  10. Chapman, S. C., Blain, A. W., Ivison, R. J. & Smail, I. R. A median redshift of 2.4 for galaxies bright at submillimetre wavelengths. Nature 422, 695–698 (2003)

    Article  ADS  CAS  Google Scholar 

  11. Ouchi, M. et al. A census of Lyman break galaxies at z = 4 and 5 in the Subaru Deep Fields: Photometric properties. Preprint at 〈http://www.arXiv.org/astro-ph/0309657〉 (2003).

  12. Stanway, E. R., Bunker, A. J. & McMahon, R. G. Lyman break galaxies and the star formation rate of the Universe at z 6. Mon. Not. R. Astron. Soc. 342, 439–445 (2003)

    Article  ADS  CAS  Google Scholar 

  13. Shen, S. et al. The size distribution of galaxies in the Sloan Digital Sky Survey. Mon. Not. R. Astron. Soc. 343, 978–994 (2003)

    Article  ADS  Google Scholar 

  14. Jimenez, R., MacDonald, J., Dunlop, J. S., Padoan, P. & Peacock, J. A. Synthetic stellar populations: single stellar populations, stellar interior models and primordial protogalaxies. Mon. Not. R. Astron. Soc. 349, 240–254 (2004)

    Article  ADS  Google Scholar 

  15. Baldry, I. K. et al. The 2dF galaxy redshift survey: Constraints on cosmic star formation history from the cosmic spectrum. Astrophys. J. 569, 582–594 (2002)

    Article  ADS  CAS  Google Scholar 

  16. Glazebrook, K. et al. The Sloan Digital Sky Survey: The cosmic spectrum and star formation history. Astrophys. J. 587, 55–70 (2003)

    Article  ADS  Google Scholar 

  17. Spergel, D. N. et al. First year Wilkinson Microwave Anisotropy Probe (WMAP) observations: Determination of cosmological parameters. Astrophys. J. Suppl. 148, 175–194 (2003)

    Article  ADS  Google Scholar 

  18. Gordon, K. D., Clayton, G. C., Misselt, K. A., Landolt, A. U. & Wolff, M. J. A quantitative comparison of the Small Magellanic Cloud, Large Magellanic Cloud, and Milky Way ultraviolet to near-infrared extinction curves. Astrophys. J. 594, 279–293 (2003)

    Article  ADS  CAS  Google Scholar 

  19. Heavens, A. F., Jimenez, R. & Lahav, O. Massive lossless data compression and multiple parameter estimation from galaxy spectra. Mon. Not. R. Astron. Soc. 317, 965–972 (2000)

    Article  ADS  CAS  Google Scholar 

  20. Reichardt, C., Jimenez, R. & Heavens, A. F. Recovering physical parameters from galaxy spectra using MOPED. Mon. Not. R. Astron. Soc. 327, 849–867 (2001)

    Article  ADS  Google Scholar 

  21. Panter, B., Heavens, A. F. & Jimenez, R. Star formation and metallicity history of the SDSS galaxy survey: unlocking the fossil record. Mon. Not. R. Astron. Soc. 343, 1145–1154 (2003)

    Article  ADS  CAS  Google Scholar 

  22. Dickinson, M., Papovich, C., Ferguson, H. C. & Budavri, T. The evolution of the global stellar mass density at 0 < z < 3. Astrophys. J. 587, 25–40 (2003)

    Article  ADS  Google Scholar 

  23. Dunlop, J. S. in Deep Millimetre Surveys (eds Lowenthal, J. D. & Hughes, D. H.) 11–18 (World Scientific, Singapore, 2001)

    Book  Google Scholar 

  24. Perez-Gonzalez, P. G. et al. Stellar populations in local star-forming galaxies—II. Recent star formation properties and stellar masses. Mon. Not. R. Astron. Soc. 338, 525–543 (2003)

    Article  ADS  Google Scholar 

  25. Fujita, S. S. et al. The luminosity function and star formation rate at z 0.24 based on Subaru deep imaging data. Astrophys. J. Lett. 586, 115–118 (2003)

    Article  ADS  Google Scholar 

  26. Waddington, I., Dunlop, J. S., Windhorst, R. A. & Peacock, J. A. The LBDS Hercules sample of milliJansky radio sources at 1.4 GHz: II. Redshift distribution and radio luminosity function. Mon. Not. R. Astron. Soc. 328, 882–896 (2001)

    Article  ADS  Google Scholar 

  27. Hasinger, G. The X-ray background and AGNs. in The Restless High Energy Universe (eds van den Heavel, E. P. J., in't Zand, J. J. M. & Wijers, R. A. M. J.) (Nucl. Phys. B. Suppl. Ser. in the press); preprint at 〈http://www.arXiv.org/astro-ph/0310804〉 (2003)

    Google Scholar 

  28. Calzetti, D. Reddening and star formation in starburst galaxies. Astron. J. 113, 162–184 (1997)

    Article  ADS  CAS  Google Scholar 

  29. Bruzal, G. & Charlot, S. Spectral evolution of stellar populations using isochrone synthesis. Astrophys. J. 405, 538–553 (1993)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We are grateful to M. Pettini and M. Ouchi for helpful remarks. The SDSS is managed by the Astrophysical Research Consortium (ARC) for the Participating Institutions. The participating institutions are The University of Chicago, Fermilab, the Institute for Advanced Study, the Japan Participation Group, The Johns Hopkins University, Los Alamos National Laboratory, the Max Planck Institute for Astronomy (MPIA), the Max Planck Institute for Astrophysics (MPA), New Mexico State University, the University of Pittsburgh, Princeton University, the United States Naval Observatory and the University of Washington.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan Heavens.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Supplementary Figure 1

Recovered star formation histories fromspectra for synthesised galaxies with the global SDSS star formation rate, showing effectiveness of MOPED recovery. (JPG 19 kb)

Supplementary Figure 2

Star formation rate histories, from volume-limitedsubsamples of the SDSS, showing expected shifting of peak of star formation to higher redshift of more distant, more luminous samples. (JPG 28 kb)

Supplementary Figure Legends (DOC 21 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heavens, A., Panter, B., Jimenez, R. et al. The star-formation history of the Universe from the stellar populations of nearby galaxies. Nature 428, 625–627 (2004). https://doi.org/10.1038/nature02474

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature02474

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing