Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Optimization of specificity in a cellular protein interaction network by negative selection

Abstract

Most proteins that participate in cellular signalling networks contain modular protein-interaction domains. Multiple versions of such domains are present within a given organism1: the yeast proteome, for example, contains 27 different Src homology 3 (SH3) domains2. This raises the potential problem of cross-reaction. It is generally thought that isolated domain–ligand pairs lack sufficient information to encode biologically unique interactions, and that specificity is instead encoded by the context in which the interaction pairs are presented3,4. Here we show that an isolated peptide ligand from the yeast protein Pbs2 recognizes its biological partner, the SH3 domain from Sho1, with near-absolute specificity—no other SH3 domain present in the yeast genome cross-reacts with the Pbs2 peptide, in vivo or in vitro. Such high specificity, however, is not observed in a set of non-yeast SH3 domains, and Pbs2 motif variants that cross-react with other SH3 domains confer a fitness defect, indicating that the Pbs2 motif might have been optimized to minimize interaction with competing domains specifically found in yeast. System-wide negative selection is a subtle but powerful evolutionary mechanism to optimize specificity within an interaction network composed of overlapping recognition elements.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The yeast high-osmolarity pathway as a system for studying SH3 network specificity.
Figure 2: The Sho1 SH3 domain can only be functionally replaced by extra-species (non-S. cerevisiae) SH3 domains.
Figure 3: Model: role of proteome-wide negative selection in interaction network specificity.
Figure 4: Pbs2 proline-rich motif is optimized to avoid cross-reactivity with other yeast SH3 domains.

Similar content being viewed by others

References

  1. Pawson, T. & Nash, P. Assembly of cell regulatory systems through protein interaction domains. Science 300, 445–452 (2003)

    Article  CAS  Google Scholar 

  2. Saccharomyces Genome Database, 〈http://www.yeastgenome.org/〉.

  3. Mayer, B. J. SH3 domains: complexity in moderation. J. Cell Sci. 114, 1253–1263 (2001)

    CAS  PubMed  Google Scholar 

  4. Ladbury, J. E. & Arold, S. Searching for specificity in SH domains. Chem. Biol. 7, R3–R8 (2000)

    Article  CAS  Google Scholar 

  5. Sparks, A. B. et al. Distinct ligand preferences of Src homology 3 domains from Src, Yes, Abl, Cortactin, p53bp2, PLCgamma, Crk, and Grb2. Proc. Natl Acad. Sci. USA 93, 1540–1544 (1996)

    Article  ADS  CAS  Google Scholar 

  6. Kay, B. K., Williamson, M. P. & Sudol, M. The importance of being proline: the interaction of proline-rich motifs in signaling proteins with their cognate domains. FASEB J. 14, 231–241 (2000)

    Article  CAS  Google Scholar 

  7. Cesareni, G., Panni, S., Nardelli, G. & Castagnoli, L. Can we infer peptide recognition specificity mediated by SH3 domains? FEBS Lett. 513, 38–44 (2002)

    Article  CAS  Google Scholar 

  8. Zarrinpar, A., Bhattacharyya, R. P. & Lim, W. A. The structure and function of proline recognition domains. Science [online] (doi:10.1126/stke.2003.179.re8)

    Article  Google Scholar 

  9. Lim, W. A., Richards, F. M. & Fox, R. O. Structural determinants of peptide-binding orientation and of sequence specificity in SH3 domains. Nature 372, 375–379 (1994)

    Article  ADS  CAS  Google Scholar 

  10. Feng, S., Chen, J. K., Yu, H., Simon, J. A. & Schreiber, S. L. Two binding orientations for peptides to the Src SH3 domain: development of a general model for SH3-ligand interactions. Science 266, 1241–1247 (1994)

    Article  ADS  CAS  Google Scholar 

  11. Schneider, T. D. Evolution of biological information. Nucleic Acids Res. 28, 2794–2799 (2000)

    Article  CAS  Google Scholar 

  12. Posas, F. & Saito, H. Osmotic activation of the HOG MAPK pathway via Ste11p MAPKKK: scaffold role of Pbs2p MAPKK. Science 276, 1702–1705 (1997)

    Article  CAS  Google Scholar 

  13. Tong, A. H. et al. A combined experimental and computational strategy to define protein interaction networks for peptide recognition modules. Science 295, 321–324 (2002)

    Article  ADS  CAS  Google Scholar 

  14. Fazi, B. et al. Unusual binding properties of the SH3 domain of the yeast actin-binding protein Abp1: structural and functional analysis. J. Biol. Chem. 277, 5290–5298 (2002)

    Article  CAS  Google Scholar 

  15. Park, S. H., Zarrinpar, A. & Lim, W. A. Rewiring MAP kinase pathways using alternative scaffold assembly mechanisms. Science 299, 1061–1064 (2003)

    Article  ADS  CAS  Google Scholar 

  16. Orr, M. R. & Smith, T. B. Ecology and speciation. Trends Ecol. Evol. 13, 502–506 (1998)

    Article  CAS  Google Scholar 

  17. Barnett, P., Bottger, G., Klein, A. T., Tabak, H. F. & Distel, B. The peroxisomal membrane protein Pex13p shows a novel mode of SH3 interaction. EMBO J. 19, 6382–6391 (2000)

    Article  CAS  Google Scholar 

  18. Bottger, G. et al. Saccharomyces cerevisiae PTS1 receptor Pex5p interacts with the SH3 domain of the peroxisomal membrane protein Pex13p in an unconventional, non-PXXP-related manner. Mol. Biol. Cell 11, 3963–3976 (2000)

    Article  CAS  Google Scholar 

  19. Huh, W.-K. et al. Global analysis of protein localization in budding yeast. Nature 425, 686–691 (2003)

    Article  ADS  CAS  Google Scholar 

  20. Girzalsky, W. et al. Involvement of Pex13p in Pex14p localization and peroxisomal targeting signal 2-dependent protein import into peroxisomes. J. Cell Biol. 144, 1151–1162 (1999)

    Article  CAS  Google Scholar 

  21. Sudol, M. From Src Homology domains to other signaling modules: proposal of the ‘protein recognition code’. Oncogene 17, 1469–1474 (1998)

    Article  CAS  Google Scholar 

  22. Palmer, E. Negative selection—clearing out the bad apples from the T-cell repertoire. Nature Rev. Immunol. 3, 383–391 (2003)

    Article  CAS  Google Scholar 

  23. Yaffe, M. B. et al. A motif-based profile scanning approach for genome-wide prediction of signaling pathways. Nature Biotechnol. 19, 348–353 (2001)

    Article  CAS  Google Scholar 

  24. Newman, J. R. & Keating, A. E. Comprehensive identification of human bZIP interactions with coiled-coil arrays. Science 300, 2097–2101 (2003)

    Article  ADS  CAS  Google Scholar 

  25. Kim, S. K. et al. A gene expression map for Caenorhabditis elegans. Science 293, 2087–2092 (2001)

    Article  ADS  CAS  Google Scholar 

  26. Jiang, M. et al. Genome-wide analysis of developmental and sex-regulated gene expression profiles in Caenorhabditis elegans. Proc. Natl Acad. Sci. USA 98, 218–223 (2001)

    Article  ADS  CAS  Google Scholar 

  27. Maxwell, K. L. & Davidson, A. R. Mutagenesis of a buried polar interaction in an SH3 domain: sequence conservation provides the best prediction of stability effects. Biochemistry 37, 16172–16182 (1998)

    Article  CAS  Google Scholar 

  28. Lim, W. A., Fox, R. O. & Richards, F. M. Stability and peptide binding affinity of an SH3 domain from the Caenorhabditis elegans signaling protein Sem-5. Protein Sci. 3, 1261–1266 (1994)

    Article  CAS  Google Scholar 

  29. Kwok, P. Y. & Duan, S. SNP discovery by direct DNA sequencing. Methods Mol. Biol. 212, 71–84 (2003)

    CAS  PubMed  Google Scholar 

  30. Lim, W. A. & Richards, F. M. Critical residues in an SH3 domain from Sem-5 suggest a mechanism for proline-rich peptide recognition. Nature Struct. Biol. 1, 221–225 (1994)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank A. Davidson and members of the Davidson laboratory, I. Herskowitz, P. Y. Kwok, E. O'Shea, A. Sali, K. Yamamoto, R. Zuckerman, P. Chien, K. Chak, R. Bhattacharyya, J. Dueber, N. Sallee, B. Yeh, and members of the Lim laboratory for assistance and discussion. This work was supported by grants from the NIH and the Packard Foundation. S.-H.P. is a Jane Coffin Child Fellow. A.Z. is supported by the UCSF Medical Scientist Training Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wendell A. Lim.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zarrinpar, A., Park, SH. & Lim, W. Optimization of specificity in a cellular protein interaction network by negative selection. Nature 426, 676–680 (2003). https://doi.org/10.1038/nature02178

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature02178

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing