Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The long-term carbon cycle, fossil fuels and atmospheric composition

Abstract

The long-term carbon cycle operates over millions of years and involves the exchange of carbon between rocks and the Earth's surface. There are many complex feedback pathways between carbon burial, nutrient cycling, atmospheric carbon dioxide and oxygen, and climate. New calculations of carbon fluxes during the Phanerozoic eon (the past 550 million years) illustrate how the long-term carbon cycle has affected the burial of organic matter and fossil-fuel formation, as well as the evolution of atmospheric composition.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A model of the long-term carbon cycle.
Figure 2: Plot of global organic carbon burial during the Phanerozoic eon compared with the times of deposition of major oil and gas source rocks.
Figure 3: Plots of organic carbon/pyrite sulphur (C:S) buried in sediments versus time, compared with the fraction of oil and gas source rocks that are of type III (including coal).
Figure 4: Systems-analysis diagram showing some of the feedback relationships between marine organic carbon burial, nutrients, climate, atmospheric carbon dioxide and oxygen, and ocean circulation.
Figure 5: Plots of RCO2 (the ratio of the mass of carbon dioxide in the atmosphere in the past to that for the pre-industrial present) and %O2 during the Phanerozoic eon.

References

  1. Garrels, R. M., Lerman, A. & Mackenzie, F. T. Controls of atmospheric O2 and CO2 — past, present, and future. Am. Sci. 64, 306–315 (1976).

    ADS  Google Scholar 

  2. Holland, H. D. The Chemistry of the Atmosphere and Oceans (Wiley, New York, 1978).

    Google Scholar 

  3. Ebelmen J. J. Sur les produits de la décomposition des espèces minérales de la famille des silicates. Annu. Rev. Mines 12, 627–654 (1845).

    Google Scholar 

  4. Urey, H. C. The Planets: their Origin and Development (Yale Univ., New Haven, 1952).

    Google Scholar 

  5. IPCC (Intergovernmental Panel on Climate Change) Climate Change 2001: Synthesis Report (IPCC, Geneva, 2001).

  6. Berner, R. A. & Canfield, D. E. A model for atmospheric oxygen over Phanerozoic time. Am. J. Sci. 289, 333–361 (1989).

    Article  ADS  CAS  Google Scholar 

  7. Veizer, J. et al. 87Sr/86Sr, δ13C and δ18O evolution of Phanerozoic seawater. Chem. Geol. 161, 59–88 (1999).

    Article  ADS  CAS  Google Scholar 

  8. Berner, R. A. & Raiswell, R. Burial of organic carbon and pyrite sulfur in sediments over Phanerozoic time: a new theory. Geochim. Cosmochim. Acta 47, 855–862 (1983).

    Article  ADS  CAS  Google Scholar 

  9. Garrels R. M. & Lerman, A. Coupling of the sedimentary sulfur and carbon cycles – an improved model. Am. J. Sci. 284, 989–1007 (1984).

    Article  ADS  CAS  Google Scholar 

  10. Walker J. C. G. Global geochemical cycles of atmospheric oxygen. Mar. Geol. 70, 159–174 (1986).

    Article  ADS  CAS  Google Scholar 

  11. Berner, R. A. Modeling atmospheric O2 over Phanerozoic time. Geochim. Cosmochim. Acta 65, 685–694 (2001).

    Article  ADS  CAS  Google Scholar 

  12. Hayes, J. M, Strauss, H. & Kaufman, A. J. The abundance of 13C in marine organic matter and isotope fractionation in the global biogeochemical cycle of carbon during the past 800 Ma. Chem. Geol. 161, 103–125 (1999).

    Article  ADS  CAS  Google Scholar 

  13. Korte, C, Kozur, H. W., Joachimski, M. M. & Veizer, J. Strontium, oxygen and carbon isotope records of Permian seawater. Eur. Geophys. Soc. Geophys. Res. Abstr. 5, 13061 (2003).

    Google Scholar 

  14. Klemme, H. D. & Ulmishek, G. F. Effective petroleum source rocks of the world: stratigraphic distribution and controlling depositional factors. Bull. Am. Ass. Petrol. Geol. 75, 1809–1851 (1991).

    CAS  Google Scholar 

  15. Bestougeff, M. A. Summary of world coal resources and reserves. 26th Int. Geol. Cong. Paris Colloq. 35, 353–366 (1980).

    CAS  Google Scholar 

  16. Strauss, H. Geological evolution from isotope proxy signals — sulfur. Chem. Geol. 161, 89–101 (1999).

    Article  ADS  CAS  Google Scholar 

  17. Demaison, G. J. & Moore, G. T. Anoxic environments and oil source bed genesis. Bull. Am. Ass. Petrol. Geol. 64, 1179–1209 (1980).

    CAS  Google Scholar 

  18. Berry, W. B. N. & Wilde, P. Progressive ventilation of the oceans — an explanation for the distribution of the lower Paleozoic black shales. Am. J. Sci. 278, 257–275 (1978).

    Article  ADS  Google Scholar 

  19. Pederson, T. F. & Calvert, S. E. Anoxia vs productivity: what controls the formation of organic carbon-rich sediments and sedimentary rocks. Bull. Am. Ass. Petrol. Geol. 74, 454–466 (1990).

    Google Scholar 

  20. Canfield, D. E. Factors influencing organic carbon preservation in marine sediments. Chem. Geol. 114, 315–329 (1994).

    Article  ADS  CAS  Google Scholar 

  21. Hedges J. I. et al. Sedimentary organic matter preservation: A test for selective degradation under oxic conditions. Am. J. Sci. 299, 529–555 (1999).

    Article  ADS  CAS  Google Scholar 

  22. Falkowski, P. G. & Raven, J. Aquatic Photosynthesis (Blackwell, Oxford, 1997).

    Google Scholar 

  23. Lenton T. M. & Watson, A. J. Redfield revisited 2: What regulates the oxygen content of the atmosphere? Glob. Biogeochem. Cycles 14, 249–268 (2000).

    Article  ADS  CAS  Google Scholar 

  24. Berner, R. A., Beerling, D. J., Dudley, R., Robinson, J. M. & Wildman, R. A. Phanerozoic atmospheric oxygen. Annu. Rev. Earth Planet. Sci. 31, 105–134 (2003).

    Article  ADS  CAS  Google Scholar 

  25. Berner, R. A. The Phanerozoic Carbon Cycle (Oxford Univ. Press, Oxford, in the press).

  26. Van Cappellen, P. & Ingall, E. D. Redox stabilization of the atmosphere and oceans by phosphorus-limited marine productivity. Science 271, 493–496 (1996).

    Article  ADS  CAS  Google Scholar 

  27. Colman, A. S. & Holland, H. D. Marine Authigenesis: From Microbial to Global (eds Glenn, C., Lucas, J. & Prevot-Lucas, L.) 53–75 (Soc. Econ. Paleontologists & Mineralogists, 2000).

    Book  Google Scholar 

  28. Falkowski, P. G. Evolution of the nitrogen cycle and its influence on the biological sequestration of CO2 in the ocean. Nature 387, 272–275 (1997).

    Article  ADS  CAS  Google Scholar 

  29. Crowley, T. J. & North, G. R. Paleoclimatology (Oxford Univ. Press, Oxford, 1991).

    Google Scholar 

  30. Weissert, H. C. Isotope stratigraphy, a monitor of paleoenvironmental change: a case study from the Early Cretaceous. Surv. Geophys. 10, 1–61 (1989).

    Article  ADS  Google Scholar 

  31. Wallmann, K. Controls on the Cretaceous and Cenozoic evolution of seawater composition, atmospheric CO2 and climate. Geochim. Cosmochim. Acta 65, 3005–3025 (2001).

    Article  ADS  CAS  Google Scholar 

  32. Betts, J. N. & Holland, H. D. The oxygen content of ocean bottom waters, the burial efficiency of organic-carbon and the regulation of atmospheric oxygen. Palaeogeogr., Palaeoclimatol., Palaeoecol. 97, 5–18 (1991).

    Article  CAS  Google Scholar 

  33. Berner, R. A. & Kothavala, Z. GEOCARB III: A revised model of atmospheric CO2 over Phanerozoic time. Am. J. Sci. 301, 182–204 (2001).

    Article  ADS  CAS  Google Scholar 

  34. Hansen, K. W. & Wallmann, K. Cretaceous and Cenozoic evolution of seawater composition, atmospheric O2 and CO2 . Am. J. Sci. 303, 94–148 (2003).

    Article  ADS  CAS  Google Scholar 

  35. Tajika, E. Climate change during the last 150 million years: reconstruction from a carbon cycle model. Earth Planet Sci. Lett. 160, 695–707 (1998).

    Article  ADS  CAS  Google Scholar 

  36. Bergman, N., Lenton, T. & Watson, A. Coupled Phanerozoic predictions of atmospheric oxygen and carbon dioxide. Eur. Geophys. Soc. Geophys. Res. Abstr. 5, 11208 (2003).

    Google Scholar 

  37. Royer, D. L., Berner, R. A. & Beerling, D. J. Phanerozoic atmospheric CO2 change: evaluating geochemical and paleobiological approaches. Earth Sci. Rev. 54, 349–392 (2001).

    Article  ADS  CAS  Google Scholar 

  38. Crowley, T. J. & Berner, R. A. CO2 and climate change. Science 292, 870–872 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by grants from the US Department of Energy and the US National Science Foundation.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berner, R. The long-term carbon cycle, fossil fuels and atmospheric composition. Nature 426, 323–326 (2003). https://doi.org/10.1038/nature02131

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature02131

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing