Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Chaperonin-mediated stabilization and ATP-triggered release of semiconductor nanoparticles

Abstract

Various properties of semiconductor nanoparticles, including photoluminescence and catalytic activity, make these materials attractive for a range of applications1,2. As nanoparticles readily coagulate and so lose their size-dependent properties, shape-persistent three-dimensional stabilizers that enfold nanoparticles have been exploited3,4,5,6,7,8,9. However, such wrapping approaches also make the nanoparticles insensitive to external stimuli, and so may limit their application. The chaperonin proteins GroEL (from Escherichia coli) and T.th (‘T.th cpn’, from Thermus thermophilus HB8) encapsulate denatured proteins inside a cylindrical cavity; after refolding, the encapsulated proteins are released by the action of ATP inducing a conformational change of the cavity10,11. Here we report that GroEL and T.th cpn can also enfold CdS semiconductor nanoparticles, giving them high thermal and chemical stability in aqueous media. Analogous to the biological function of the chaperonins, the nanoparticles can be readily released from the protein cavities by the action of ATP. We expect that integration of such biological mechanisms into materials science will open a door to conceptually new bioresponsive devices.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Chaperonin proteins as ATP-responsive barrels for inclusion of nanoparticles.
Figure 2: SEC analysis of T.th cpn–CdS the nanoparticle inclusion complex and its specific response to ATP in KCl-containing Tris–HCl buffer.
Figure 3: Transmission electron micrographs of T.th cpn–CdS nanoparticle complexes and intact T.th cpn.
Figure 4: Shielding effects of chaperonins on electron transfer from CdS nanoparticles to methyl viologen (MV2+).
Figure 5: Thermal stabilities and relative fluorescence intensities of GroEL–CdS and T.th cpn–CdS inclusion complexes.

Similar content being viewed by others

References

  1. Alivisatos, A. P. Semiconductor clusters, nanocrystals, and quantum dots. Science 271, 933–937 (1996)

    Article  ADS  CAS  Google Scholar 

  2. Schmid, G. et al. Current and future applications of nanoclusters. Chem. Soc. Rev. 28, 179–185 (1999)

    Article  CAS  Google Scholar 

  3. Meldrum, F. C., Heywood, B. R. & Mann, S. Magnetoferritin — in vitro synthesis of a novel magnetic protein. Science 257, 522–523 (1992)

    Article  ADS  CAS  Google Scholar 

  4. Wong, K. K. W. & Mann, S. Biomimetic synthesis of cadmium sulfide-ferritin nanocomposites. Adv. Mater. 8, 928–932 (1996)

    Article  CAS  Google Scholar 

  5. Shenton, W., Pum, D., Sleytr, U. B. & Mann, S. Biocrystal templating of CdS superlattices using self-assembled bacterial S-layers. Nature 389, 585–587 (1997)

    Article  ADS  CAS  Google Scholar 

  6. Balogh, L. & Tomalia, D. A. Poly(amidoamine) dendrimer-templated nanocomposites. 1. Synthesis of zerovalent copper nanoclusters. J. Am. Chem. Soc. 120, 7355–7356 (1998)

    Article  CAS  Google Scholar 

  7. Lemon, B. I. & Crooks, R. M. Preparation and characterization of dendrimer-encapsulated CdS semiconductor quantum dots. J. Am. Chem. Soc. 122, 12886–12887 (2000)

    Article  CAS  Google Scholar 

  8. Shenton, W., Mann, S., Cölfen, H., Bacher, A. & Fischer, M. Synthesis of nanophase iron oxide in lumazine synthase capsids. Angew. Chem. Int. Edn Engl. 40, 442–445 (2001)

    Article  CAS  Google Scholar 

  9. McMillan, R. A. et al. Ordered nanoparticle arrays formed on engineered chaperonin protein templates. Nature Mater. 1, 247–252 (2002)

    Article  ADS  CAS  Google Scholar 

  10. Roseman, A. M., Chen, S., White, H., Braig, K. & Saibil, H. R. The chaperonin ATPase cycle: mechanism of allosteric switching and movements of substrate-binding domains in groEL. Cell 87, 241–251 (1996)

    Article  CAS  Google Scholar 

  11. Ranson, N. A. et al. ATP-bound states of groEL captured by cryo-electron microscopy. Cell 107, 869–879 (2001)

    Article  CAS  Google Scholar 

  12. Hendrix, R. W. Purification and properties of groE, a host protein involved in bacteriophage assembly. J. Mol. Biol. 129, 375–392 (1979)

    Article  CAS  Google Scholar 

  13. Braig, K. et al. The crystal structure of the bacterial chaperonin groEL at 2.8 Å. Nature 371, 578–586 (1994)

    Article  ADS  CAS  Google Scholar 

  14. Taguchi, H., Konishi, J., Ishii, N. & Yoshida, M. A chaperonin from a thermophilic bacterium, Thermus thermophilus, that controls refoldings of several thermophilic enzymes. J. Biol. Chem. 266, 22411–22418 (1991)

    CAS  PubMed  Google Scholar 

  15. Amada, K. et al. Molecular cloning, expression, and characterization of chaperonin-60 and chaperonin-10 from a thermophilic bacterium, Thermus thermophilus HB8. J. Biochem. 118, 347–354 (1995)

    Article  CAS  Google Scholar 

  16. Ishii, N., Taguchi, H., Sumi, M. & Yoshida, M. Structure of holo-chaperonin studied with electron microscopy. Oligomeric cpn10 on top of two layers of cpn60 rings with two stripes each. FEBS Lett. 299, 169–174 (1992)

    Article  CAS  Google Scholar 

  17. Ishii, N., Taguchi, H., Sasabe, H. & Yoshida, M. Folding intermediate binds to the bottom of bullet-shaped holo-chaperonin and is readily accessible to antibody. J. Mol. Biol. 236, 691–696 (1994)

    Article  CAS  Google Scholar 

  18. Murakoshi, K. et al. Preparation of size-controlled hexagonal CdS nanocrystallites and the characteristics of their surface structures. J. Chem. Soc. Faraday Trans. 94, 579–586 (1998)

    Article  CAS  Google Scholar 

  19. Hosokawa, H. et al. In-situ EXAFS observation of the surface structure of colloidal CdS nanocrystallites in N,N-dimethylformamide. J. Phys. Chem. 100, 6649–6656 (1996)

    Article  CAS  Google Scholar 

  20. Brus, L. E. Electron-electron and electron-hole interactions in small semiconductor crystallites: The size dependence of the lowest excited electronic state. J. Chem. Phys. 80, 4403–4409 (1984)

    Article  ADS  CAS  Google Scholar 

  21. Ramsden, J. J. & Grätzel, M. Photoluminescence of small cadmium sulfide particles. J. Chem. Soc. Faraday Trans. 1 80, 919–933 (1984)

    Article  CAS  Google Scholar 

  22. Hengleln, A. Photochemistry of colloidal cadmium sulfide. 2. Effects of adsorbed methyl viologen and of colloidal platinum. J. Phys. Chem. 86, 2291–2293 (1982)

    Article  Google Scholar 

  23. Llorca, O., Galán, A., Carrascosa, J. L., Muga, A. & Valpuesta, J. M. GroEL under heat-shock. J. Biol. Chem. 273, 32587–32594 (1998)

    Article  CAS  Google Scholar 

  24. Martin, J., Horwich, A. L. & Hartl, F. U. Prevention of protein denaturation under heat stress by the chaperonin Hsp60. Science 258, 995–998 (1992)

    Article  ADS  CAS  Google Scholar 

  25. Goloubinoff, P., Christeller, J. T., Gatenby, A. A. & Lorimer, G. H. Reconstitution of active dimeric ribulose bisphosphate carboxylase from an unfolded state depends on two chaperonin proteins and Mg-ATP. Nature 342, 884–889 (1989)

    Article  ADS  CAS  Google Scholar 

  26. Todd, M. J., Viitanen, P. V. & Lorimer, G. H. Hydrolysis of adenosine 5′-triphosphate by Escherichia coli groEL: effects of groES and potassium ion. Biochemistry 32, 8560–8567 (1993)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank K. Konishi for his initial contribution to the present work; K. Tsumoto for discussions; J. Oono and M. Nakamura for SEC analysis with MALS. N.I. was responsible for TEM microscopy. We acknowledge support from the 21st Century COE Programs of Research and Education (T.A., Human–Friendly Materials Based on Chemistry; M.Y., Future Nano-Materials), and from the JST ERATO Nanospace program. K.K. acknowledges support from the Nissan Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takuzo Aida.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ishii, D., Kinbara, K., Ishida, Y. et al. Chaperonin-mediated stabilization and ATP-triggered release of semiconductor nanoparticles. Nature 423, 628–632 (2003). https://doi.org/10.1038/nature01663

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature01663

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing