Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Association of the ADAM33 gene with asthma and bronchial hyperresponsiveness

Abstract

Asthma is a common respiratory disorder characterized by recurrent episodes of coughing, wheezing and breathlessness. Although environmental factors such as allergen exposure are risk factors in the development of asthma, both twin and family studies point to a strong genetic component1,2. To date, linkage studies have identified more than a dozen genomic regions linked to asthma3. In this study, we performed a genome-wide scan on 460 Caucasian families and identified a locus on chromosome 20p13 that was linked to asthma (log10 of the likelihood ratio (LOD), 2.94) and bronchial hyperresponsiveness (LOD, 3.93). A survey of 135 polymorphisms in 23 genes identified the ADAM33 gene4 as being significantly associated with asthma using case-control, transmission disequilibrium and haplotype analyses (P = 0.04–0.000003). ADAM proteins are membrane-anchored metalloproteases with diverse functions, which include the shedding of cell-surface proteins such as cytokines and cytokine receptors5. The identification and characterization of ADAM33, a putative asthma susceptibility gene identified by positional cloning in an outbred population, should provide insights into the pathogenesis and natural history of this common disease.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Linkage analysis and gene content of chromosome 20p13.
Figure 2: Linkage disequilibrium and case-control studies.
Figure 3: ADAM33 chromosomal region.
Figure 4: Expression analysis of the ADAM33 gene.

Similar content being viewed by others

References

  1. Los, H., Postmus, P. E. & Boomsma, D. I. Asthma genetics and intermediate phenotypes: a review from twin studies. Twin Res. 4, 81–93 (2001)

    Article  CAS  PubMed  Google Scholar 

  2. The European Community Respiratory Health Survey. Group genes for asthma? An analysis of the European Community Respiratory Health Survey. Am. J. Respir. Crit. Care Med. 156, 1773–1780 (1997)

    Article  Google Scholar 

  3. Wjst, M. & Immervoll, T. An internet linkage and mutation database for the complex phenotype asthma. Bioinformatics 14, 827–828 (1998)

    Article  CAS  PubMed  Google Scholar 

  4. Yoshinaka, T. et al. Identification and characterization of novel mouse and human ADAM33s with potential metalloprotease activity. Gene 282, 227–236 (2002)

    Article  CAS  PubMed  Google Scholar 

  5. Mullberg, J., Althoff, K., Jostock, T. & Rose-John, S. The importance of shedding of membrane proteins for cytokine biology. Eur. Cytokine Netw. 11, 27–38 (2000)

    CAS  PubMed  Google Scholar 

  6. Dupuis, J. & Siegmund, D. Statistical methods for mapping quantitative trait loci from a dense set of markers. Genetics 151, 373–386 (1999)

    CAS  PubMed  PubMed Central  Google Scholar 

  7. De Sanctis, G. T. et al. Quantitative locus analysis of airway hyperresponsiveness in A/J and C57BL/6J mice. Nature Genet. 11, 150–154 (1995)

    Article  CAS  PubMed  Google Scholar 

  8. Stone, A. L., Kroeger, M. & Sang, Q. X. A. Structure-function analysis of the ADAM family of disintegrin-like and metalloproteinase-containing proteins. J. Prot. Chem. 18, 447–465 (1999)

    Article  CAS  Google Scholar 

  9. Primakoff, P. & Myles, D. G. The ADAM gene family: surface proteins with adhesion and protease activity. Trends Genet. 16, 83–87 (2000)

    Article  CAS  PubMed  Google Scholar 

  10. Black, R. A. & White, J. M. ADAMs: focus on the protease domain. Curr. Opin. Cell Biol. 10, 654–659 (1998)

    Article  CAS  PubMed  Google Scholar 

  11. Loechel, F., Overgaard, M. T., Oxvig, C., Albrechtsen, R. & Wewer, U. M. Regulation of human ADAM 12 protease by the prodomain. J. Biol. Chem. 274, 13427–13433 (1999)

    Article  CAS  PubMed  Google Scholar 

  12. Howard, L., Maciewicz, R. A. & Blobel, C. Cloning and characterization of ADAM28: evidence for autocatalytic pro-domain removal and for cell surface localization of mature ADAM28. Biochem. J. 348, 21–27 (2000)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Das, M., Harvey, I., Chu, L. L., Sinha, M. & Pelletier, J. Full length cDNAs: more than just reaching ends. Physiol. Genom. 6, 57–80 (2001)

    Article  CAS  Google Scholar 

  14. Maquat, L. E. The power of point mutations. Nature Genet. 27, 5–6 (2001)

    Article  CAS  PubMed  Google Scholar 

  15. Holgate, S. T. et al. Epithelial-mesenchymal interactions in the pathogenesis of asthma. J. Allergy Clin. Immunol. 105, 193–204 (2000)

    Article  CAS  PubMed  Google Scholar 

  16. Richter, A. et al. The contribution of interleukin (il)-4 and il-13 to the epithelial-mesenchymal trophic unit in asthma. Am. J. Respir. Cell. Mol. Biol. 25, 385–391 (2001)

    Article  CAS  PubMed  Google Scholar 

  17. Yagami-Hiromasa, T. et al. A metalloprotease-disintegrin participating in myoblast fusion. Nature 377, 652–656 (1995)

    Article  ADS  CAS  PubMed  Google Scholar 

  18. Wilkinson, P. et al. Linkage of asthma to markers on chromosome 12 in a sample of 240 families using quantitative phenotype scores. Genomics 53, 251–259 (1998)

    Article  CAS  PubMed  Google Scholar 

  19. Ghosh, S. et al. Methods for precise sizing, automated binning of alleles, and reduction of error rates in large-scale genotyping using fluorescently labelled dinucleotide markers. Genome Res. 7, 165–178 (1997)

    Article  CAS  PubMed  Google Scholar 

  20. Lange, K., Weeks, D. & Boehnke, M. Programs for pedigree analysis: MENDEL, FISHER, and dGENE. Genet. Epidemiol. 5, 471–472 (1988)

    Article  CAS  PubMed  Google Scholar 

  21. Boehnke, M. Allele frequency estimation from data on relatives. Am. J. Hum. Genet. 48, 22–25 (1991)

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Kruglyak, L. & Lander, E. S. Complete multipoint sib-pair analysis of qualitative and quantitative traits. Am. J. Hum. Genet. 57, 439–454 (1995)

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Matise, T. C., Perlin, M. & Chakravarti, A. Automated construction of genetic linkage maps using an expert system (MultiMap): a human genome linkage map. Nature Genet. 6, 384–390 (1994)

    Article  CAS  PubMed  Google Scholar 

  24. Del Mastro, R. G. & Lovett, M. Isolation of coding sequences from genomic regions using direct selection. Methods Mol. Biol. 68, 183–199 (1997)

    CAS  PubMed  Google Scholar 

  25. Soares, M. B. in Automated DNA Sequencing and Analysis (eds Adams, M. D., Fields, C. & Venter, J. C.) 110–114 (Academic, New York, 1994)

    Book  Google Scholar 

  26. Dietz, H. C. et al. Marfan syndrome caused by a recurrent de novo missense mutation in the fibrillin gene. Nature 352, 337–339 (1991)

    Article  ADS  CAS  PubMed  Google Scholar 

  27. Abecasis, G. R. & Cookson, W. O. C. GOLD-graphical overview of linkage disequilibrium. Bioinformatics 16, 182–183 (2000)

    Article  CAS  PubMed  Google Scholar 

  28. Excoffier, L. & Slatkin, M. Maximum-likelihood estimation of molecular haplotype frequencies in a diploid population. Mol. Biol. Evol. 12, 921–927 (1995)

    CAS  PubMed  Google Scholar 

  29. Spielman, R. S., McGinnis, R. E. & Ewens, W. J. Transmission test for linkage disequilibrium: the insulin gene region and insulin-dependent diabetes mellitus (IDDM). Am. J. Hum. Genet. 52, 506–516 (1993)

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Kruglyak, L., Daly, M. J., Reeve-Daly, M. P. & Lander, E. S. Parametric and nonparametric linkage analysis: A unified multipoint approach. Am. J. Hum. Genet. 58, 1347–1363 (1996)

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the patients and families that participated in this study, the nurses who assisted in the collection of clinical information and material, R. Saponjic, J. Wald, R. Dockhorn, S. Galant, W. Berger, and R. Townley for recruiting US families, and the Medical Research Council for additional UK family resources. We also thank N. Morton, L. Lowe and A. Bureau for statistical insight and support and A. Anisowicz, A. Baek, A. O'Connell, S. Raghuraman and K. Irenze for technical assistance. Sequencing support was provided by GenomeVision services of Genome Therapeutics Corporation. Some of the analyses used the program package SAGE, supported by the US Public Health Service.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tim P. Keith.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Van Eerdewegh, P., Little, R., Dupuis, J. et al. Association of the ADAM33 gene with asthma and bronchial hyperresponsiveness. Nature 418, 426–430 (2002). https://doi.org/10.1038/nature00878

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature00878

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing