Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Immediate Communication
  • Published:

Antidepressant action of ketamine via mTOR is mediated by inhibition of nitrergic Rheb degradation

Abstract

As traditional antidepressants act only after weeks/months, the discovery that ketamine, an antagonist of glutamate/N-methyl-d-aspartate (NMDA) receptors, elicits antidepressant actions in hours has been transformative. Its mechanism of action has been elusive, though enhanced mammalian target of rapamycin (mTOR) signaling is a major feature. We report a novel signaling pathway wherein NMDA receptor activation stimulates generation of nitric oxide (NO), which S-nitrosylates glyceraldehyde-3-phosphate dehydrogenase (GAPDH). Nitrosylated GAPDH complexes with the ubiquitin-E3-ligase Siah1 and Rheb, a small G protein that activates mTOR. Siah1 degrades Rheb leading to reduced mTOR signaling, while ketamine, conversely, stabilizes Rheb that enhances mTOR signaling. Drugs selectively targeting components of this pathway may offer novel approaches to the treatment of depression.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Covington HE 3rd, Vialou V, Nestler EJ . From synapse to nucleus: novel targets for treating depression. Neuropharmacology 2010; 58: 683–693.

    Article  CAS  Google Scholar 

  2. Javitt DC . Glutamate as a therapeutic target in psychiatric disorders. Mol Psychiatry 2004; 9: 984–997.

    Article  CAS  Google Scholar 

  3. Lipton SA . Pathologically-activated therapeutics for neuroprotection: mechanism of NMDA receptor block by memantine and S-nitrosylation. Curr Drug Targets 2007; 8: 621–632.

    Article  CAS  Google Scholar 

  4. Pilc A, Wieronska JM, Skolnick P . Glutamate-based antidepressants: preclinical psychopharmacology. Biol Psychiatry 2013; 73: 1125–1132.

    Article  CAS  Google Scholar 

  5. Svenningsson P, Bateup H, Qi H, Takamiya K, Huganir RL, Spedding M et al. Involvement of AMPA receptor phosphorylation in antidepressant actions with special reference to tianeptine. Eur J Neurosci 2007; 26: 3509–3517.

    Article  Google Scholar 

  6. Shabel SJ, Proulx CD, Piriz J, Malinow R . Mood regulation. GABA/glutamate co-release controls habenula output and is modified by antidepressant treatment. Science 2014; 345: 1494–1498.

    Article  CAS  Google Scholar 

  7. Autry AE, Adachi M, Nosyreva E, Na ES, Los MF, Cheng PF et al. NMDA receptor blockade at rest triggers rapid behavioural antidepressant responses. Nature 2011; 475: 91–95.

    Article  CAS  Google Scholar 

  8. Berman RM, Cappiello A, Anand A, Oren DA, Heninger GR, Charney DS et al. Antidepressant effects of ketamine in depressed patients. Biol Psychiatry 2000; 47: 351–354.

    Article  CAS  Google Scholar 

  9. Murrough JW, Iosifescu DV, Chang LC, Al Jurdi RK, Green CE, Perez AM et al. Antidepressant efficacy of ketamine in treatment-resistant major depression: a two-site randomized controlled trial. Am J Psychiatry 2013; 170: 1134–1142.

    Article  Google Scholar 

  10. Zarate CA Jr, Singh JB, Carlson PJ, Brutsche NE, Ameli R, Luckenbaugh DA et al. A randomized trial of an N-methyl-D-aspartate antagonist in treatment-resistant major depression. Arch Gen Psychiatry 2006; 63: 856–864.

    Article  CAS  Google Scholar 

  11. Lindholm JS, Autio H, Vesa L, Antila H, Lindemann L, Hoener MC et al. The antidepressant-like effects of glutamatergic drugs ketamine and AMPA receptor potentiator LY 451646 are preserved in bdnf(+)/(-) heterozygous null mice. Neuropharmacology 2012; 62: 391–397.

    Article  CAS  Google Scholar 

  12. Monteggia LM, Zarate C Jr . Antidepressant actions of ketamine: from molecular mechanisms to clinical practice. Curr Opin Neurobiol 2015; 30: 139–143.

    Article  CAS  Google Scholar 

  13. Murrough JW, Charney DS . Cracking the moody brain: lifting the mood with ketamine. Nat Med 2010; 16: 1384–1385.

    Article  CAS  Google Scholar 

  14. O'Leary OF, Dinan TG, Cryan JF . Faster, better, stronger: towards new antidepressant therapeutic strategies. Eur J Pharmacol 2015; 753: 32–50.

    Article  CAS  Google Scholar 

  15. Li N, Lee B, Liu RJ, Banasr M, Dwyer JM, Iwata M et al. mTOR-dependent synapse formation underlies the rapid antidepressant effects of NMDA antagonists. Science 2010; 329: 959–964.

    Article  CAS  Google Scholar 

  16. Hara MR, Agrawal N, Kim SF, Cascio MB, Fujimuro M, Ozeki Y et al. S-nitrosylated GAPDH initiates apoptotic cell death by nuclear translocation following Siah1 binding. Nat Cell Biol 2005; 7: 665–674.

    Article  CAS  Google Scholar 

  17. Stamler JS, Hess DT . Nascent nitrosylases. Nat Cell Biol 2010; 12: 1024–1026.

    Article  CAS  Google Scholar 

  18. Sen N, Hara MR, Kornberg MD, Cascio MB, Bae BI, Shahani N et al. Nitric oxide-induced nuclear GAPDH activates p300/CBP and mediates apoptosis. Nat Cell Biol 2008; 10: 866–873.

    Article  CAS  Google Scholar 

  19. Sen N, Snyder SH . Neurotrophin-mediated degradation of histone methyltransferase by S-nitrosylation cascade regulates neuronal differentiation. Proc Natl Acad Sci USA 2011; 108: 20178–20183.

    Article  CAS  Google Scholar 

  20. Hara MR, Thomas B, Cascio MB, Bae BI, Hester LD, Dawson VL et al. Neuroprotection by pharmacologic blockade of the GAPDH death cascade. Proc Natl Acad Sci USA 2006; 103: 3887–3889.

    Article  CAS  Google Scholar 

  21. Kragten E, Lalande I, Zimmermann K, Roggo S, Schindler P, Muller D et al. Glyceraldehyde-3-phosphate dehydrogenase, the putative target of the antiapoptotic compounds CGP 3466 and R-(-)-deprenyl. J Biol Chem 1998; 273: 5821–5828.

    Article  CAS  Google Scholar 

  22. Waldmeier PC, Boulton AA, Cools AR, Kato AC, Tatton WG . Neurorescuing effects of the GAPDH ligand CGP 3466B. J Neural Transm Suppl 2000; 60: 197–214.

    Google Scholar 

  23. Waldmeier PC, Spooren WP, Hengerer B . CGP 3466 protects dopaminergic neurons in lesion models of parkinson's disease. Naunyn Schmiedebergs Arch Pharmacol 2000; 362: 526–537.

    Article  CAS  Google Scholar 

  24. Samuels BA, Hen R . Novelty-suppressed feeding in the mouse. In Gould TD (ed). Mood and Anxiety Related Phenotypes in Mice Characterization Using Behavioral Tests. Humana Press: New York, NY, 2011 pp 107–121.

    Chapter  Google Scholar 

  25. Yamagata K, Sanders LK, Kaufmann WE, Yee W, Barnes CA, Nathans D et al. Rheb, a growth factor- and synaptic activity-regulated gene, encodes a novel ras-related protein. J Biol Chem 1994; 269: 16333–16339.

    CAS  PubMed  Google Scholar 

  26. Sucher NJ, Yu E, Chan SF, Miri M, Lee BJ, Xiao B et al. Association of the small GTPase rheb with the NMDA receptor subunit NR3A. Neurosignals 2010; 18: 203–209.

    Article  CAS  Google Scholar 

  27. Gideons ES, Kavalali ET, Monteggia LM . Mechanisms underlying differential effectiveness of memantine and ketamine in rapid antidepressant responses. Proc Natl Acad Sci USA 2014; 111: 8649–8654.

    Article  CAS  Google Scholar 

  28. Xia P, Chen HS, Zhang D, Lipton SA . Memantine preferentially blocks extrasynaptic over synaptic NMDA receptor currents in hippocampal autapses. J Neurosci 2010; 30: 11246–11250.

    Article  CAS  Google Scholar 

  29. Lee MN, Ha SH, Kim J, Koh A, Lee CS, Kim JH et al. Glycolytic flux signals to mTOR through glyceraldehyde-3-phosphate dehydrogenase-mediated regulation of rheb. Mol Cell Biol 2009; 29: 3991–4001.

    Article  CAS  Google Scholar 

  30. Lucki I . The forced swimming test as a model for core and component behavioral effects of antidepressant drugs. Behav Pharmacol 1997; 8: 523–532.

    Article  CAS  Google Scholar 

  31. Porsolt RD, Bertin A, Jalfre M . Behavioral despair in mice: a primary screening test for antidepressants. Arch Int Pharmacodyn Ther 1977; 229: 327–336.

    CAS  Google Scholar 

  32. Can A, Dao DT, Arad M, Terrillion CE, Piantadosi SC, Gould TD . The mouse forced swim test. J Vis Exp 2012; 59: e3638.

    Google Scholar 

  33. Dulawa SC, Hen R . Recent advances in animal models of chronic antidepressant effects: he novelty-induced hypophagia test. Neurosci Biobehav Rev 2005; 29: 771–783.

    Article  CAS  Google Scholar 

  34. Harkin AJ, Bruce KH, Craft B, Paul IA . Nitric oxide synthase inhibitors have antidepressant-like properties in mice. 1. Acute treatments are active in the forced swim test. Eur J Pharmacol 1999; 372: 207–213.

    Article  CAS  Google Scholar 

  35. Abdallah CG, Sanacora G, Duman RS, Krystal JH . Ketamine and rapid-acting antidepressants: a window into a new neurobiology for mood disorder therapeutics. Annu Rev Med 2015; 66: 509–523.

    Article  CAS  Google Scholar 

  36. Sutton MA, Schuman EM . Local translational control in dendrites and its role in long-term synaptic plasticity. J Neurobiol 2005; 64: 116–131.

    Article  CAS  Google Scholar 

  37. Marin P, Nastiuk KL, Daniel N, Girault JA, Czernik AJ, Glowinski J et al. Glutamate-dependent phosphorylation of elongation factor-2 and inhibition of protein synthesis in neurons. J Neurosci 1997; 17: 3445–3454.

    Article  CAS  Google Scholar 

  38. Vornov JJ, Coyle JT . Glutamate neurotoxicity and the inhibition of protein synthesis in the hippocampal slice. J Neurochem 1991; 56: 996–1006.

    Article  CAS  Google Scholar 

  39. Orrego F, Lipmann F . Protein synthesis in brain slices. Effects of electrical stimulation and acidic amino acids. J Biol Chem 1967; 242: 665–671.

    CAS  PubMed  Google Scholar 

  40. Nakamura T, Lipton SA . Redox modulation by S-nitrosylation contributes to protein misfolding, mitochondrial dynamics, and neuronal synaptic damage in neurodegenerative diseases. Cell Death Differ 2011; 18: 1478–1486.

    Article  CAS  Google Scholar 

  41. Zarate CA Jr, Singh JB, Quiroz JA, De Jesus G, Denicoff KK, Luckenbaugh DA et al. A double-blind, placebo-controlled study of memantine in the treatment of major depression. Am J Psychiatry 2006; 163: 153–155.

    Article  Google Scholar 

Download references

Acknowledgements

We thank L Hester, R Barrow, A Snowman, B Ziegler and A Carmichael for their assistance. We are also grateful for discussions with members of the SHS laboratory. This work was supported by US Public Health Service Grant DA00266.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S H Snyder.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Molecular Psychiatry website

Supplementary information

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Harraz, M., Tyagi, R., Cortés, P. et al. Antidepressant action of ketamine via mTOR is mediated by inhibition of nitrergic Rheb degradation. Mol Psychiatry 21, 313–319 (2016). https://doi.org/10.1038/mp.2015.211

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/mp.2015.211

This article is cited by

Search

Quick links