Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Common DNA methylation alterations in multiple brain regions in autism

Abstract

Autism spectrum disorders (ASD) are increasingly common neurodevelopmental disorders defined clinically by a triad of features including impairment in social interaction, impairment in communication in social situations and restricted and repetitive patterns of behavior and interests, with considerable phenotypic heterogeneity among individuals. Although heritability estimates for ASD are high, conventional genetic-based efforts to identify genes involved in ASD have yielded only few reproducible candidate genes that account for only a small proportion of ASDs. There is mounting evidence to suggest environmental and epigenetic factors play a stronger role in the etiology of ASD than previously thought. To begin to understand the contribution of epigenetics to ASD, we have examined DNA methylation (DNAm) in a pilot study of postmortem brain tissue from 19 autism cases and 21 unrelated controls, among three brain regions including dorsolateral prefrontal cortex, temporal cortex and cerebellum. We measured over 485 000 CpG loci across a diverse set of functionally relevant genomic regions using the Infinium HumanMethylation450 BeadChip and identified four genome-wide significant differentially methylated regions (DMRs) using a bump hunting approach and a permutation-based multiple testing correction method. We replicated 3/4 DMRs identified in our genome-wide screen in a different set of samples and across different brain regions. The DMRs identified in this study represent suggestive evidence for commonly altered methylation sites in ASD and provide several promising new candidate genes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Rapin I . Autism. N Engl J Med 1997; 337: 97–104.

    Article  CAS  PubMed  Google Scholar 

  2. American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders 4th edn. American Psychiatric Association Press: Washington, DC, 1994.

  3. Autism: economic impact and implications. Proceedings of the 2012 Autism Summit, 31 March 2012; Hong Kong, China.

  4. Dawson G . Dramatic increase in autism prevalence parallels explosion of research into its biology and causes. Arch Gen Psychiatry 2012; 70: 1–2.

    Google Scholar 

  5. Splawski I, Yoo DS, Stotz SC, Cherry A, Clapham DE, Keating MT . CACNA1H mutations in autism spectrum disorders. J Biol Chem 2006; 281: 22085–22091.

    Article  CAS  PubMed  Google Scholar 

  6. Heron SE, Khosravani H, Varela D, Bladen C, Williams TC, Newman MR et al. Extended spectrum of idiopathic generalized epilepsies associated with CACNA1H functional variants. Ann Neurol 2007; 62: 560–568.

    Article  CAS  PubMed  Google Scholar 

  7. Glessner JT, Wang K, Cai G, Korvatska O, Kim CE, Wood S et al. Autism genome-wide copy number variation reveals ubiquitin and neuronal genes. Nature 2009; 459: 569–573.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Cottrell CE, Bir N, Varga E, Alvarez CE, Bouyain S, Zernzach R et al. Contactin 4 as an autism susceptibility locus. Autism Res 2011; 4: 189–199.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Roohi J, Montagna C, Tegay DH, Palmer LE, DeVincent C, Pomeroy JC et al. Disruption of contactin 4 in three subjects with autism spectrum disorder. J Med Genet 2009; 46: 176–182.

    Article  CAS  PubMed  Google Scholar 

  10. Fernandez T, Morgan T, Davis N, Klin A, Morris A, Farhi A et al. Disruption of Contactin 4 (CNTN4) results in developmental delay and other features of 3p deletion syndrome. Am J Hum Genet 2008; 82: 1385.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Banerjee-Basu S, Packer A . SFARI Gene: an evolving database for the autism research community. Dis Model Mech 2010; 3: 133–135.

    Article  PubMed  Google Scholar 

  12. Newschaffer CJ, Fallin D, Lee NL . Heritable and nonheritable risk factors for autism spectrum disorders. Epidemiol Rev 2002; 24: 137–153.

    Article  PubMed  Google Scholar 

  13. Sullivan PF, Daly MJ, O'Donovan M . Genetic architectures of psychiatric disorders: the emerging picture and its implications. Nat Rev Genet 2012; 13: 537–551.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Gratten J, Visscher PM, Mowry BJ, Wray NR . Interpreting the role of de novo protein-coding mutations in neuropsychiatric disease. Nat Genet 2013; 45: 234–238.

    Article  CAS  PubMed  Google Scholar 

  15. Schanen NC . Epigenetics of autism spectrum disorders. Hum Mol Genet 2006; 15, (Spec No. 2) R138–R150.

    Article  CAS  PubMed  Google Scholar 

  16. Arking DE, Cutler DJ, Brune CW, Teslovich TM, West K, Ikeda M et al. A common genetic variant in the neurexin superfamily member CNTNAP2 increases familial risk of autism. Am J Hum Genet 2008; 82: 160–164.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Fradin D, Cheslack-Postava K, Ladd-Acosta C, Newschaffer C, Chakravarti A, Arking DE et al. Parent-of-origin effects in autism identified through genome-wide linkage analysis of 16000 SNPs. PLoS One 2010; 5: 9.

    Article  Google Scholar 

  18. Amir RE, Van den Veyver IB, Wan M, Tran CQ, Francke U, Zoghbi HY . Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2. Nat Genet 1999; 23: 185–188.

    Article  CAS  PubMed  Google Scholar 

  19. Horsthemke B, Wagstaff J . Mechanisms of imprinting of the Prader-Willi/Angelman region. Am J Med Genet A 2008; 146A: 2041–2052.

    Article  CAS  PubMed  Google Scholar 

  20. Oberle I, Rousseau F, Heitz D, Kretz C, Devys D, Hanauer A et al. Instability of a 550-base pair DNA segment and abnormal methylation in fragile X syndrome. Science 1991; 252: 1097–1102.

    Article  CAS  PubMed  Google Scholar 

  21. Ginsberg MR, Rubin RA, Falcone T, Ting AH, Natowicz MR . Brain transcriptional and epigenetic associations with autism. PLoS One 2012; 7: e44736.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Nguyen A, Rauch TA, Pfeifer GP, Hu VW . Global methylation profiling of lymphoblastoid cell lines reveals epigenetic contributions to autism spectrum disorders and a novel autism candidate gene, RORA, whose protein product is reduced in autistic brain. Faseb J 2010; 24: 3036–3051.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Irizarry RA, Ladd-Acosta C, Wen B, Wu Z, Montano C, Onyango P et al. The human colon cancer methylome shows similar hypo- and hypermethylation at conserved tissue-specific CpG island shores. Nat Genet 2009; 41: 178–186.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Doi A, Park IH, Wen B, Murakami P, Aryee MJ, Irizarry R et al. Differential methylation of tissue- and cancer-specific CpG island shores distinguishes human induced pluripotent stem cells, embryonic stem cells and fibroblasts. Nat Genet 2009; 41: 1350–1353.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Dudziec E, Miah S, Choudhry HM, Owen HC, Blizard S, Glover M et al. Hypermethylation of CpG islands and shores around specific microRNAs and mirtrons is associated with the phenotype and presence of bladder cancer. Clin Cancer Res 2011; 17: 1287–1296.

    Article  CAS  PubMed  Google Scholar 

  26. Feber A, Wilson GA, Zhang L, Presneau N, Idowu B, Down TA et al. Comparative methylome analysis of benign and malignant peripheral nerve sheath tumors. Genome Res 2011; 21: 515–524.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Rao X, Evans J, Chae H, Pilrose J, Kim S, Yan P et al. CpG island shore methylation regulates caveolin-1 expression in breast cancer. Oncogene 2012 http://dx.doi.org/10.1038/onc.2012.474 (e-pub ahead of print).

  28. Akalin A, Garrett-Bakelman FE, Kormaksson M, Busuttil J, Zhang L, Khrebtukova I et al. Base-pair resolution DNA methylation sequencing reveals profoundly divergent epigenetic landscapes in acute myeloid leukemia. PLoS Genet 2012; 8: e1002781.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Shen J, Wang S, Zhang YJ, Wu HC, Kibriya MG, Jasmine F et al. Exploring genome-wide DNA methylation profiles altered in hepatocellular carcinoma using Infinium HumanMethylation 450 BeadChips. Epigenetics 2013; 8: 34–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Liu Y, Aryee MJ, Padyukov L, Fallin MD, Hesselberg E, Runarsson A et al. Epigenome-wide association data implicate DNA methylation as an intermediary of genetic risk in rheumatoid arthritis. Nat Biotechnol 2013; 31: 142–147.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Nakano K, Whitaker JW, Boyle DL, Wang W, Firestein GS . DNA methylome signature in rheumatoid arthritis. Ann Rheum Dis 2013; 72: 110–117.

    Article  CAS  PubMed  Google Scholar 

  32. Jiang YH, Sahoo T, Michaelis RC, Bercovich D, Bressler J, Kashork CD et al. A mixed epigenetic/genetic model for oligogenic inheritance of autism with a limited role for UBE3A. Am J Med Genet A 2004; 131: 1–10.

    Article  PubMed  Google Scholar 

  33. Gregory SG, Connelly JJ, Towers AJ, Johnson J, Biscocho D, Markunas CA et al. Genomic and epigenetic evidence for oxytocin receptor deficiency in autism. BMC Medicine 2009; 7: 62.

    Article  PubMed  PubMed Central  Google Scholar 

  34. James SJ, Shpyleva S, Melnyk S, Pavliv O, Pogribny IP . Complex epigenetic regulation of Engrailed-2 (EN-2) homeobox gene in the autism cerebellum. Transl Psychiatry 2013; 3: e232.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Nagarajan RP, Patzel KA, Martin M, Yasui DH, Swanberg SE, Hertz-Picciotto I et al. MECP2 promoter methylation and X chromosome inactivation in autism. Autism Res 2008; 1: 169–178.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Shulha HP, Cheung I, Whittle C, Wang J, Virgil D, Lin CL et al. Epigenetic signatures of autism: trimethylated H3K4 landscapes in prefrontal neurons. Arch Gen Psychiatry 2012; 69: 314–324.

    Article  CAS  PubMed  Google Scholar 

  37. Carey B . Brain Banks For Autism Face Dearth. The New York Times 2012.

  38. Voineagu I, Wang X, Johnston P, Lowe JK, Tian Y, Horvath S et al. Transcriptomic analysis of autistic brain reveals convergent molecular pathology. Nature 2011; 474: 380–384.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Bibikova M, Barnes B, Tsan C, Ho V, Klotzle B, Le JM et al. High density DNA methylation array with single CpG site resolution. Genomics 2011; 98: 288–295.

    Article  CAS  PubMed  Google Scholar 

  40. Sandoval J, Heyn H, Moran S, Serra-Musach J, Pujana MA, Bibikova M et al. Validation of a DNA methylation microarray for 450 000 CpG sites in the human genome. Epigenetics 2011; 6: 692–702.

    Article  CAS  PubMed  Google Scholar 

  41. Jaffe AE, Murakami P, Lee H, Leek JT, Fallin MD, Feinberg AP et al. Bump hunting to identify differentially methylated regions in epigenetic epidemiology studies. Int J Epidemiol 2012; 41: 200–209.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Li LC, Dahiya R . MethPrimer: designing primers for methylation PCRs. Bioinformatics 2002; 18: 1427–1431.

    Article  CAS  PubMed  Google Scholar 

  43. Hansen KAM, Irizarry RA Minfi: analyzing Illumina 450 K methylation arrays 2012.

  44. Du P, Zhang X, Huang CC, Jafari N, Kibbe WA, Hou L et al. Comparison of Beta-value and M-value methods for quantifying methylation levels by microarray analysis. BMC Bioinformatics 2010; 11: 587.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Lee H, Jaffe AE, Feinberg JI, Tryggvadottir R, Brown S, Montano C et al. DNA methylation shows genome-wide association of NFIX, RAPGEF2 and MSRB3 with gestational age at birth. Int J Epidemiol 2012; 41: 188–199.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Guintivano J, Aryee M, Kaminsky Z . A cell epigenotype specific model for the correction of brain cellular heterogeneity bias and its application to age, brain region and major depression. Epigenetics 2013; 8: 290–302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Houseman EA, Christensen BC, Karagas MR, Wrensch MR, Nelson HH, Wiemels JL et al. Copy number variation has little impact on bead-array-based measures of DNA methylation. Bioinformatics 2009; 25: 1999–2005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Mill J, Tang T, Kaminsky Z, Khare T, Yazdanpanah S, Bouchard L et al. Epigenomic profiling reveals DNA-methylation changes associated with major psychosis. Am J Hum Genet 2008; 82: 696–711.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Sabunciyan S, Aryee MJ, Irizarry RA, Rongione M, Webster MJ, Kaufman WE et al. Genome-wide DNA methylation scan in major depressive disorder. PLoS One 2012; 7: e34451.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Krek A, Grun D, Poy MN, Wolf R, Rosenberg L, Epstein EJ et al. Combinatorial microRNA target predictions. Nat Genet 2005; 37: 495–500.

    Article  CAS  PubMed  Google Scholar 

  51. Lai EC . Micro RNAs are complementary to 3′ UTR sequence motifs that mediate negative post-transcriptional regulation. Nat Genet 2002; 30: 363–364.

    Article  CAS  PubMed  Google Scholar 

  52. Fukuoka T, Sumida K, Yamada T, Higuchi C, Nakagaki K, Nakamura K et al. Gene expression profiles in the common marmoset brain determined using a newly developed common marmoset-specific DNA microarray. Neurosci Res 2010; 66: 62–85.

    Article  CAS  PubMed  Google Scholar 

  53. Groen W, Teluij M, Buitelaar J, Tendolkar I . Amygdala and hippocampus enlargement during adolescence in autism. J Am Acad Child Adolesc Psychiatry 2010; 49: 552–560.

    PubMed  Google Scholar 

  54. Hasan KM, Walimuni IS, Frye RE . Global cerebral and regional multimodal neuroimaging markers of the neurobiology of autism: development and cognition. J Child Neurol 2012; 28: 874–885.

    Article  PubMed  Google Scholar 

  55. Agostini G, Mancini J, Chabrol B, Villeneuve N, Milh M, George F et al. [Language disorders in children with morphologic abnormalities of the hippocampus]. Arch Pediatr 2010; 17: 1008–1016.

    Article  CAS  PubMed  Google Scholar 

  56. Raymond GV, Bauman ML, Kemper TL . Hippocampus in autism: a Golgi analysis. Acta neuropathologica 1996; 91: 117–119.

    Article  CAS  PubMed  Google Scholar 

  57. Clement JP, Aceti M, Creson TK, Ozkan ED, Shi Y, Reish NJ et al. Pathogenic SYNGAP1 mutations impair cognitive development by disrupting maturation of dendritic spine synapses. Cell 2012; 151: 709–723.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Labate A, Tarantino P, Palamara G, Gagliardi M, Cavalcanti F, Ferlazzo E et al. Mutations in PRRT2 result in familial infantile seizures with heterogeneous phenotypes including febrile convulsions and probable SUDEP. Epilepsy Res 2013; 104: 280–284.

    Article  CAS  PubMed  Google Scholar 

  59. Chen WJ, Lin Y, Xiong ZQ, Wei W, Ni W, Tan GH et al. Exome sequencing identifies truncating mutations in PRRT2 that cause paroxysmal kinesigenic dyskinesia. Nat Genet 2011; 43: 1252–1255.

    Article  CAS  PubMed  Google Scholar 

  60. Riant F, Roze E, Barbance C, Meneret A, Guyant-Marechal L, Lucas C et al. PRRT2 mutations cause hemiplegic migraine. Neurology 2012; 79: 2122–2124.

    Article  CAS  PubMed  Google Scholar 

  61. Lee HY, Huang Y, Bruneau N, Roll P, Roberson ED, Hermann M et al. Mutations in the gene PRRT2 cause paroxysmal kinesigenic dyskinesia with infantile convulsions. Cell Rep 2012; 1: 2–12.

    Article  CAS  PubMed  Google Scholar 

  62. Heron SE, Grinton BE, Kivity S, Afawi Z, Zuberi SM, Hughes JN et al. PRRT2 mutations cause benign familial infantile epilepsy and infantile convulsions with choreoathetosis syndrome. Am J Hum Genet 2012; 90: 152–160.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. De Vries B, Callenbach PM, Kamphorst JT, Weller CM, Koelewijn SC, ten Houten R et al. PRRT2 mutation causes benign familial infantile convulsions. Neurology 2012; 79: 2154–2155.

    Article  PubMed  Google Scholar 

  64. Ono S, Yoshiura K, Kinoshita A, Kikuchi T, Nakane Y, Kato N et al. Mutations in PRRT2 responsible for paroxysmal kinesigenic dyskinesias also cause benign familial infantile convulsions. J Hum Genet 2012; 57: 338–341.

    Article  CAS  PubMed  Google Scholar 

  65. Gartlan KH, Belz GT, Tarrant JM, Minigo G, Katsara M, Sheng KC et al. A complementary role for the tetraspanins CD37 and Tssc6 in cellular immunity. J Immunol 2010; 185: 3158–3166.

    Article  CAS  PubMed  Google Scholar 

  66. Goschnick MW, Jackson DE . Tetraspanins-structural and signalling scaffolds that regulate platelet function. Mini Rev Med Chem 2007; 7: 1248–1254.

    Article  CAS  PubMed  Google Scholar 

  67. Scholz CJ, Jacob CP, Buttenschon HN, Kittel-Schneider S, Boreatti-Hummer A, Zimmer M et al. Functional variants of TSPAN8 are associated with bipolar disorder and schizophrenia. Am J Med Genet B Neuropsychiatr Genet 2010; 153B: 967–972.

    CAS  PubMed  Google Scholar 

  68. Durand CM, Betancur C, Boeckers TM, Bockmann J, Chaste P, Fauchereau F et al. Mutations in the gene encoding the synaptic scaffolding protein SHANK3 are associated with autism spectrum disorders. Nat Genet 2007; 39: 25–27.

    Article  CAS  PubMed  Google Scholar 

  69. Moessner R, Marshall CR, Sutcliffe JS, Skaug J, Pinto D, Vincent J et al. Contribution of SHANK3 mutations to autism spectrum disorder. Am J Hum Genet 2007; 81: 1289–1297.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Gauthier J, Spiegelman D, Piton A, Lafreniere RG, Laurent S, St-Onge J et al. Novel de novo SHANK3 mutation in autistic patients. Am J Med Genet B Neuropsychiatr Genet 2009; 150B: 421–424.

    Article  CAS  PubMed  Google Scholar 

  71. Berkel S, Marshall CR, Weiss B, Howe J, Roeth R, Moog U et al. Mutations in the SHANK2 synaptic scaffolding gene in autism spectrum disorder and mental retardation. Nat Genet 2010; 42: 489–491.

    Article  CAS  PubMed  Google Scholar 

  72. Volders K, Nuytens K, Creemers JW . The autism candidate gene Neurobeachin encodes a scaffolding protein implicated in membrane trafficking and signaling. Curr Mol Med 2011; 11: 204–217.

    Article  CAS  PubMed  Google Scholar 

  73. Hogart A, Wu D, LaSalle JM, Schanen NC . The comorbidity of autism with the genomic disorders of chromosome 15q11.2-q13. Neurobiol Dis 2010; 38: 181–191.

    Article  CAS  PubMed  Google Scholar 

  74. Li X, Ito M, Zhou F, Youngson N, Zuo X, Leder P et al. A maternal-zygotic effect gene, Zfp57, maintains both maternal and paternal imprints. Dev Cell 2008; 15: 547–557.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Strogantsev R, Ferguson-Smith AC . Proteins involved in establishment and maintenance of imprinted methylation marks. Brief Funct Genomics 2012; 11: 227–239.

    Article  CAS  PubMed  Google Scholar 

  76. Zuo X, Sheng J, Lau HT, McDonald CM, Andrade M, Cullen DE et al. Zinc finger protein ZFP57 requires its co-factor to recruit DNA methyltransferases and maintains DNA methylation imprint in embryonic stem cells via its transcriptional repression domain. J Biol Chem 2012; 287: 2107–2118.

    Article  CAS  PubMed  Google Scholar 

  77. Liu Y, Zhang X, Blumenthal RM, Cheng X . A common mode of recognition for methylated CpG. Trends Biochem Sci 2013; 38: 177–183.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Raney BJ, Cline MS, Rosenbloom KR, Dreszer TR, Learned K, Barber GP et al. ENCODE whole-genome data in the UCSC genome browser (2011 update). Nucleic Acids Res 2011; 39 (Database issue): D871–D875.

    Article  CAS  PubMed  Google Scholar 

  79. Rossignol DA, Frye RE . Mitochondrial dysfunction in autism spectrum disorders: a systematic review and meta-analysis. Mol Psychiatry 2012; 17: 290–314.

    Article  CAS  PubMed  Google Scholar 

  80. Marui T, Funatogawa I, Koishi S, Yamamoto K, Matsumoto H, Hashimoto O et al. The NADH-ubiquinone oxidoreductase 1 alpha subcomplex 5 (NDUFA5) gene variants are associated with autism. Acta Psychiatr Scand 2011; 123: 118–124.

    Article  CAS  PubMed  Google Scholar 

  81. Tsao CY, Mendell JR . Autistic disorder in 2 children with mitochondrial disorders. J Child Neurol 2007; 22: 1121–1123.

    Article  PubMed  Google Scholar 

  82. Davies MN, Volta M, Pidsley R, Lunnon K, Dixit A, Lovestone S et al. Functional annotation of the human brain methylome identifies tissue-specific epigenetic variation across brain and blood. Genome biology 2012; 13: R43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Daniel Geschwind and Neelroop Parikshak for sharing the PFC and TC samples, obtained from the Autism Tissue Program (ATP) of Autism Speaks, for these analyses. In addition, we would also like to thank the NICHD Brain and Tissue Bank for Neurodevelopmental Disorders at The University of Maryland for providing brain samples from the CBL brain region. This work was supported by the US National Institutes of Health Centers of Excellence in Genomic Science, 5P50HG003233 to APF and Department of Defense (CDMRP) AR080125 to APF and WEK.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A P Feinberg.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Molecular Psychiatry website

Supplementary information

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ladd-Acosta, C., Hansen, K., Briem, E. et al. Common DNA methylation alterations in multiple brain regions in autism. Mol Psychiatry 19, 862–871 (2014). https://doi.org/10.1038/mp.2013.114

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/mp.2013.114

Keywords

This article is cited by

Search

Quick links