Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Neuroanatomical phenotypes in a mouse model of the 22q11.2 microdeletion

Abstract

Recurrent deletions at the 22q11.2 locus have been established as a strong genetic risk factor for the development of schizophrenia and cognitive dysfunction. Individuals with 22q11.2 deletions have a range of well-defined volumetric abnormalities in a number of critical brain structures. A mouse model of the 22q11.2 deletion (Df(16)A+/−) has previously been utilized to characterize disease-associated abnormalities on synaptic, cellular, neurocircuitry, and behavioral levels. We performed a high-resolution MRI analysis of mutant mice compared with wild-type littermates. Our analysis revealed a striking similarity in the specific volumetric changes of Df(16)A+/− mice compared with human 22q11.2 deletion carriers, including in cortico-cerebellar, cortico-striatal and cortico-limbic circuits. In addition, higher resolution magnetic resonance imaging compared with neuroimaging in human subjects allowed the detection of previously unknown subtle local differences. The cerebellar findings in Df(16)A+/− mice are particularly instructive as they are localized to specific areas within both the deep cerebellar nuclei and the cerebellar cortex. Our study indicates that the Df(16)A+/−mouse model recapitulates most of the hallmark neuroanatomical changes observed in 22q11.2 deletion carriers. Our findings will help guide the design and interpretation of additional complementary studies and thereby advance our understanding of the abnormal brain development underlying the emergence of 22q11.2 deletion-associated psychiatric and cognitive symptoms.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Karayiorgou M, Simon TJ, Gogos JA . 22q11.2 microdeletions: linking DNA structural variation to brain dysfunction and schizophrenia. Nat Rev Neurosci 2010; 11: 402–416.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Levinson DF, Duan J, Oh S, Wang K, Sanders AR, Shi J et al. Copy number variants in schizophrenia: confirmation of five previous findings and new evidence for 3q29 microdeletions and VIPR2 duplications. Am J Psychiatry 2011; 168: 302–316.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Karayiorgou M, Morris MA, Morrow B, Shprintzen RJ, Goldberg R, Borrow J et al. Schizophrenia susceptibility associated with interstitial deletions of chromosome 22q11. Proc Natl Acad Sci USA 1995; 92: 7612–7616.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Xu B, Roos JL, Levy S, van Rensburg EJ, Gogos JA, Karayiorgou M . Strong association of de novo copy number mutations with sporadic schizophrenia. Nat Genet 2008; 40: 880–885.

    Article  CAS  PubMed  Google Scholar 

  5. Sebat J, Lakshmi B, Malhotra D, Troge J, Lese-Martin C, Walsh T et al. Strong association of de novo copy number mutations with autism. Science 2007; 316: 445–449.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Malhotra D, McCarthy S, Michaelson JJ, Vacic V, Burdick KE, Yoon S et al. High frequencies of de novo CNVs in bipolar disorder and schizophrenia. Neuron 2011; 72: 951–963.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Stark KL, Xu B, Bagchi A, Lai W-S, Liu H, Hsu R et al. Altered brain microRNA biogenesis contributes to phenotypic deficits in a 22q11-deletion mouse model. Nat Genet 2008; 40: 751–760.

    Article  CAS  PubMed  Google Scholar 

  8. Mukai J, Dhilla A, Drew LJ, Stark KL, Cao L, Macdermott AB et al. Palmitoylation-dependent neurodevelopmental deficits in a mouse model of 22q11 microdeletion. Nat Neurosci 2008; 11: 1302–1310.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Sigurdsson T, Stark KL, Karayiorgou M, Gogos JA, Gordon JA . Impaired hippocampal-prefrontal synchrony in a genetic mouse model of schizophrenia. Nature 2010; 464: 763–767.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Fénelon K, Mukai J, Xu B, Hsu P-K, Drew LJ, Karayiorgou M et al. Deficiency of Dgcr8, a gene disrupted by the 22q11.2 microdeletion, results in altered short-term plasticity in the prefrontal cortex. Proc Natl Acad Sci USA 2011; 108: 4447–4452.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Drew LJ, Stark KL, Fénelon K, Karayiorgou M, Macdermott AB, Gogos JA . Evidence for altered hippocampal function in a mouse model of the human 22q11.2 microdeletion. Mol Cell Neurosci 2011; 47: 293–305.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Xu B, Ionita-Laza I, Roos JL, Boone B, Woodrick S, Sun Y et al. De novo gene mutations highlight patterns of genetic and neural complexity in schizophrenia. Nat Genet 2012; 44: 1365–1369.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Drew LJ, Crabtree GW, Markx S, Stark KL, Chaverneff F, Xu B et al. The 22q11.2 microdeletion: fifteen years of insights into the genetic and neural complexity of psychiatric disorders. Int J Dev Neurosci 2011; 29: 259–281.

    Article  CAS  PubMed  Google Scholar 

  14. Arguello PA, Gogos JA . Modeling madness in mice: one piece at a time. Neuron 2006; 52: 179–196.

    Article  CAS  PubMed  Google Scholar 

  15. Zhang J, Peng Q, Li Q, Jahanshad N, Hou Z, Jiang M et al. Longitudinal characterization of brain atrophy of a Huntington's disease mouse model by automated morphological analyses of magnetic resonance images. Neuroimage 2010; 49: 2340–2351.

    Article  PubMed  Google Scholar 

  16. Cramer PE, Cirrito JR, Wesson DW, Lee CYD, Karlo JC, Zinn AE et al. ApoE-directed therapeutics rapidly clear β-amyloid and reverse deficits in AD mouse models. Science 2012; 335: 1503–1506.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Goldberg MS, Pisani A, Haburcak M, Vortherms TA, Kitada T, Costa C et al. Nigrostriatal dopaminergic deficits and hypokinesia caused by inactivation of the familial Parkinsonism-linked gene DJ-1. Neuron 2005; 45: 489–496.

    Article  CAS  PubMed  Google Scholar 

  18. Lerch JP, Yiu AP, Martinez-Canabal A, Pekar T, Bohbot VD, Frankland PW et al. Maze training in mice induces MRI-detectable brain shape changes specific to the type of learning. Neuroimage 2011; 54: 2086–2095.

    Article  PubMed  Google Scholar 

  19. Nieman BJ, Wong MD, Henkelman RM . Genes into geometry: imaging for mouse development in 3D. Curr Opini Genet Dev 2011; 21: 638–646.

    Article  CAS  Google Scholar 

  20. Nieman BJ, Lerch JP, Bock NA, Chen XJ, Sled JG, Henkelman RM . Mouse behavioral mutants have neuroimaging abnormalities. Hum Brain Mapp 2007; 28: 567–575.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Ellegood J, Pacey LK, Hampson DR, Lerch JP, Henkelman RM . Anatomical phenotyping in a mouse model of fragile X syndrome with magnetic resonance imaging. Neuroimage 2010; 53: 1023–1029.

    Article  PubMed  Google Scholar 

  22. Horev G, Ellegood J, Lerch JP, Son Y-EE, Muthuswamy L, Vogel H et al. Dosage-dependent phenotypes in models of 16p11.2 lesions found in autism. Proc Natl Acad Sci USA 2011; 108: 17076–17081.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Ellegood J, Lerch JP, Henkelman RM . Brain abnormalities in a Neuroligin3 R451C knocking mouse model associated with autism. Autism Res 2011; 4: 368–376.

    Article  PubMed  Google Scholar 

  24. Tan GM, Arnone D, McIntosh AM, Ebmeier KP . Meta-analysis of magnetic resonance imaging studies in chromosome 22q11.2 deletion syndrome (velocardiofacial syndrome). Schizophrenia Res 2009; 115: 173–181.

    Article  Google Scholar 

  25. Johnson GA, Cofer GP, Fubara B, Gewalt SL, Hedlund LW, Maronpot RR . Magnetic resonance histology for morphologic phenotyping. J Magn Reson Imaging 2002; 16: 423–429.

    Article  PubMed  Google Scholar 

  26. Lerch JP, Sled JG, Henkelman RM . MRI phenotyping of genetically altered mice. Methods Mol Biol 2011; 711: 349–361.

    Article  CAS  PubMed  Google Scholar 

  27. Dazai J, Spring S, Cahill LS, Henkelman RM . Multiple-mouse neuroanatomical magnetic resonance imaging. J Vis Exp 2011; 48: 2497.

    Google Scholar 

  28. Thomas DL, De Vita E, Roberts S, Turner R, Yousry TA, Ordidge RJ . High-resolution fast spin echo imaging of the human brain at 4.7T: implementation and sequence characteristics. Magn Reson Med 2004; 51: 1254–1264.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Collins DL, Neelin P, Peters TM, Evans AC . Automatic 3D intersubject registration of MR volumetric data in standardized Talairach space. J Comput Assist Tomogr 1994; 18: 192–205.

    CAS  PubMed  Google Scholar 

  30. Avants BB, Epstein CL, Grossman M, Gee JC . Symmetric diffeomorphic image registration with cross-correlation: evaluating automated labeling of elderly and neurodegenerative brain. Med Image Anal 2008; 12: 26–41.

    Article  CAS  PubMed  Google Scholar 

  31. Avants BB, Tustison NJ, Song G, Cook PA, Klein A, Gee JC . A reproducible evaluation of ANTs similarity metric performance in brain image registration. Neuroimage 2011; 54: 2033–2044.

    Article  PubMed  Google Scholar 

  32. Nieman BJ, Flenniken AM, Adamson SL, Henkelman RM, Sled JG . Anatomical phenotyping in the brain and skull of a mutant mouse by magnetic resonance imaging and computed tomography. Physiol Genomics 2006; 24: 154–162.

    Article  CAS  PubMed  Google Scholar 

  33. Dorr AE, Lerch JP, Spring S, Kabani N, Henkelman RM . High resolution three-dimensional brain atlas using an average magnetic resonance image of 40 adult C57Bl/6J mice. Neuroimage 2008; 42: 60–69.

    Article  CAS  PubMed  Google Scholar 

  34. Genovese CR, Lazar NA, Nichols T . Thresholding of statistical maps in functional neuroimaging using the false discovery rate. Neuroimage 2002; 15: 870–878.

    Article  PubMed  Google Scholar 

  35. Smith SM, Nichols TE . Threshold-free cluster enhancement: addressing problems of smoothing, threshold dependence and localisation in cluster inference. Neuroimage 2009; 44: 83–98.

    Article  PubMed  Google Scholar 

  36. Deboer T, Wu Z, Lee A, Simon TJ . Hippocampal volume reduction in children with chromosome 22q11.2 deletion syndrome is associated with cognitive impairment. Behav Brain Funct 2007; 3: 54.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  37. Gothelf D, Michaelovsky E, Frisch A, Zohar AH, Presburger G, Burg M et al. Association of the low-activity COMT 158Met allele with ADHD and OCD in subjects with velocardiofacial syndrome. Int J Neuropsychopharmacol 2007; 10: 301–308.

    Article  CAS  PubMed  Google Scholar 

  38. Kates WR, Burnette CP, Bessette BA, Folley BS, Strunge L, Jabs EW et al. Frontal and caudate alterations in velocardiofacial syndrome (deletion at chromosome 22q11.2). J Child Neurol 2004; 19: 337–342.

    Article  PubMed  Google Scholar 

  39. Eliez S, Barnea-Goraly N, Schmitt JE, Liu Y, Reiss AL . Increased basal ganglia volumes in velo-cardio-facial syndrome (deletion 22q11.2). BPS 2002; 52: 68–70.

    Google Scholar 

  40. Kates WR, Bansal R, Fremont W, Antshel KM, Hao X, Higgins AM et al. Mapping cortical morphology in youth with velocardiofacial (22q11.2 deletion) syndrome. J Am Acad Child Adolesc Psychiatry 2011; 50: e272.

    Article  Google Scholar 

  41. Chow EWC, Zipursky RB, Mikulis DJ, Bassett AS . Structural brain abnormalities in patients with schizophrenia and 22q11 deletion syndrome. BPS 2002; 51: 208–215.

    Google Scholar 

  42. Eliez S, Schmitt JE, White CD, Reiss AL . Children and adolescents with velocardiofacial syndrome: a volumetric MRI study. Am J Psychiatry 2000; 157: 409–415.

    Article  CAS  PubMed  Google Scholar 

  43. van Amelsvoort T, Daly E, Robertson D, Suckling J, Ng V, Critchley H et al. Structural brain abnormalities associated with deletion at chromosome 22q11: quantitative neuroimaging study of adults with velo-cardio-facial syndrome. Br J Psychiatry 2001; 178: 412–419.

    Article  CAS  PubMed  Google Scholar 

  44. Chow EW, Mikulis DJ, Zipursky RB, Scutt LE, Weksberg R, Bassett AS . Qualitative MRI findings in adults with 22q11 deletion syndrome and schizophrenia. BPS 1999; 46: 1436–1442.

    CAS  Google Scholar 

  45. Sugama S, Bingham PM, Wang PP, Moss EM, Kobayashi H, Eto Y . Morphometry of the head of the caudate nucleus in patients with velocardiofacial syndrome (del 22q11.2). Acta Paediatr 2000; 89: 546–549.

    Article  CAS  PubMed  Google Scholar 

  46. Giedd JN, Rapoport JL, Garvey MA, Perlmutter S, Swedo SE . MRI assessment of children with obsessive-compulsive disorder or tics associated with streptococcal infection. Am J Psychiatry 2000; 157: 281–283.

    Article  CAS  PubMed  Google Scholar 

  47. Karayiorgou M, Sobin C, Blundell ML, Galke BL, Malinova L, Goldberg P et al. Family-based association studies support a sexually dimorphic effect of COMT and MAOA on genetic susceptibility to obsessive-compulsive disorder. BPS 1999; 45: 1178–1189.

    CAS  Google Scholar 

  48. Garrett A, Penniman L, Epstein JN, Casey BJ, Hinshaw SP, Glover G et al. Neuroanatomical abnormalities in adolescents with attention-deficit/hyperactivity disorder. J Am Acad Child Adolesc Psychiatry 2008; 47: 1321–1328.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Sobin C, Kiley-Brabeck K, Daniels S, Khuri J, Taylor L, Blundell M et al. Neuropsychological characteristics of children with the 22q11 Deletion Syndrome: a descriptive analysis. Child Neuropsychol 2005; 11: 39–53.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Shenton ME, Dickey CC, Frumin M, McCarley RW . A review of MRI findings in schizophrenia. Schizophrenia Res 2001; 49: 1–52.

    Article  CAS  Google Scholar 

  51. Bish JP, Pendyal A, Ding L, Ferrante H, Nguyen V, McDonald-McGinn D et al. Specific cerebellar reductions in children with chromosome 22q11.2 deletion syndrome. Neurosci Lett 2006; 399: 245–248.

    Article  CAS  PubMed  Google Scholar 

  52. Rasser PE, Schall U, Peck G, Cohen M, Johnston P, Khoo K et al. Cerebellar grey matter deficits in first-episode schizophrenia mapped using cortical pattern matching. Neuroimage 2010; 53: 1175–1180.

    Article  PubMed  Google Scholar 

  53. Ilg UJ, Thier P . The neural basis of smooth pursuit eye movements in the rhesus monkey brain. Brain Cogn 2008; 68: 229–240.

    Article  PubMed  Google Scholar 

  54. Vorstman JAS, Turetsky BI, Sijmens-Morcus MEJ . de Sain MG, Dorland B, Sprong M et al. Proline affects brain function in 22q11DS children with the low activity COMT 158 allele. Neuropsychopharmacology 2009; 34: 739–746.

    Article  CAS  PubMed  Google Scholar 

  55. Park BL, Shin HD, Cheong HS, Park CS, Sohn J-W, Kim B-J et al. Association analysis of COMT polymorphisms with schizophrenia and smooth pursuit eye movement abnormality. J Hum Genet 2009; 54: 709–712.

    Article  CAS  PubMed  Google Scholar 

  56. Shin HD, Park BL, Bae JS, Park TJ, Chun JY, Park CS et al. Association of ZDHHC8 polymorphisms with smooth pursuit eye movement abnormality. Am J Med Genet B Neuropsychiatr Genet 2010; 153B: 1167–1172.

    CAS  PubMed  Google Scholar 

  57. Mukai J, Liu H, Burt RA, Swor DE, Lai W-S, Karayiorgou M et al. Evidence that the gene encoding ZDHHC8 contributes to the risk of schizophrenia. Nat Genet 2004; 36: 725–731.

    Article  CAS  PubMed  Google Scholar 

  58. Levy DL, Sereno AB, Gooding DC, O'Driscoll GA . Eye tracking dysfunction in schizophrenia: characterization and pathophysiology. Curr Top Behav Neurosci 2010; 4: 311–347.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Ramnani N . The primate cortico-cerebellar system: anatomy and function. Nat Rev Neurosci 2006; 7: 511–522.

    Article  CAS  PubMed  Google Scholar 

  60. Stoodley CJ, Schmahmann JD . Functional topography in the human cerebellum: a meta-analysis of neuroimaging studies. Neuroimage 2009; 44: 489–501.

    Article  PubMed  Google Scholar 

  61. Stoodley CJ, Valera EM, Schmahmann JD . Functional topography of the cerebellum for motor and cognitive tasks: an fMRI study. Neuroimage 2012; 59: 1560–1570.

    Article  PubMed  Google Scholar 

  62. Arenz A, Bracey EF, Margrie TW . Sensory representations in cerebellar granule cells. Curr Opin Neurobiol 2009; 19: 445–451.

    Article  CAS  PubMed  Google Scholar 

  63. Haubensak W, Kunwar PS, Cai H, Ciocchi S, Wall NR, Ponnusamy R et al. Genetic dissection of an amygdala microcircuit that gates conditioned fear. Nature 2010; 468: 270–276.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Fung WLA, McEvilly R, Fong J . Silversides C, Chow E, Bassett A. Elevated prevalence of generalized anxiety disorder in adults with 22q11.2 deletion syndrome. Am J Psychiatry 2010; 167: 998.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Andersson F, Glaser B, Spiridon M, Debbané M, Vuilleumier P, Eliez S . Impaired activation of face processing networks revealed by functional magnetic resonance imaging in 22q11.2 deletion syndrome. Biol Psychiatry 2008; 63: 49–57.

    Article  CAS  PubMed  Google Scholar 

  66. Namiki C, Hirao K, Yamada M, Hanakawa T, Fukuyama H, Hayashi T et al. Impaired facial emotion recognition and reduced amygdalar volume in schizophrenia. Psychiatry Res 2007; 156: 23–32.

    Article  PubMed  Google Scholar 

  67. Gur RE, McGrath C, Chan RM, Schroeder L, Turner T, Turetsky BI et al. An fMRI study of facial emotion processing in patients with schizophrenia. Am J Psychiatry 2002; 159: 1992–1999.

    Article  PubMed  Google Scholar 

  68. Holt DJ, Coombs G, Zeidan MA, Goff DC, Milad MR . Failure of neural responses to safety cues in schizophrenia. Arch Gen Psychiatry 2012; 69: 893–903.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Harper KM, Hiramoto T, Tanigaki K, Kang G, Suzuki G, Trimble W et al. Alterations of social interaction through genetic and environmental manipulation of the 22q11.2 gene Sept5 in the mouse brain. Hum Mol Genet 2012; 21: 3489–3499.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Shashi V, Kwapil TR, Kaczorowski J, Berry MN, Santos CS, Howard TD et al. Evidence of gray matter reduction and dysfunction in chromosome 22q11.2 deletion syndrome. Psychiatry Res 2010; 181: 1–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Bearden CE, van Erp TGM, Dutton RA, Tran H, Zimmermann L, Sun D et al. Mapping cortical thickness in children with 22q11.2 deletions. Cereb Cortex 2007; 17: 1889–1898.

    Article  PubMed  Google Scholar 

  72. Eliez S, Schmitt JE, White CD, Wellis VG, Reiss AL . A quantitative MRI study of posterior fossa development in velocardiofacial syndrome. BPS 2001; 49: 540–546.

    CAS  Google Scholar 

  73. van Amelsvoort T, Daly E, Henry J, Robertson D, Ng V, Owen M et al. Brain anatomy in adults with velocardiofacial syndrome with and without schizophrenia: preliminary results of a structural magnetic resonance imaging study. Arch Gen Psychiatry 2004; 61: 1085–1096.

    Article  PubMed  Google Scholar 

  74. Rimol LM, Hartberg CB, Nesvåg R, Fennema-Notestine C, Hagler DJ, Pung CJ et al. Cortical thickness and subcortical volumes in schizophrenia and bipolar disorder. Biological Psychiatry 2010; 68: 41–50.

    Article  PubMed  Google Scholar 

  75. Watson DR, Anderson JME, Bai F, Barrett SL, McGinnity TM, Mulholland CC et al. A voxel based morphometry study investigating brain structural changes in first episode psychosis. Behav Brain Res 2012; 227: 91–99.

    Article  PubMed  Google Scholar 

  76. Greenstein D, Lenroot R, Clausen L, Chavez A, Vaituzis AC, Tran L et al. Cerebellar development in childhood onset schizophrenia and non-psychotic siblings. Psychiatry Res 2011; 193: 131–137.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Bergé D, Carmona S, Rovira M, Bulbena A, Salgado P, Vilarroya O . Gray matter volume deficits and correlation with insight and negative symptoms in first-psychotic-episode subjects. Acta Psychiatr Scand 2011; 123: 431–439.

    Article  PubMed  Google Scholar 

  78. Borgwardt SJ, Picchioni MM, Ettinger U, Toulopoulou T, Murray R, McGuire PK . Regional gray matter volume in monozygotic twins concordant and discordant for schizophrenia. Biol Psychiatry 2010; 67: 956–964.

    Article  PubMed  Google Scholar 

  79. Goldman AL, Pezawas L, Mattay VS, Fischl B, Verchinski BA, Zoltick B et al. Heritability of brain morphology related to schizophrenia: a large-scale automated magnetic resonance imaging segmentation study. Biol Psychiatry 2008; 63: 475–483.

    Article  PubMed  Google Scholar 

  80. Mamah D, Wang L, Barch D, de Erausquin GA, Gado M, Csernansky JG . Structural analysis of the basal ganglia in schizophrenia. Schizophrenia Res 2007; 89: 59–71.

    Article  Google Scholar 

  81. Chakos MH, Lieberman JA, Bilder RM, Borenstein M, Lerner G, Bogerts B et al. Increase in caudate nuclei volumes of first-episode schizophrenic patients taking antipsychotic drugs. Am J Psychiatry 1994; 151: 1430–1436.

    Article  CAS  PubMed  Google Scholar 

  82. Sieberer M, Haltenhof H, Haubitz B, Pabst B, Miller K, Garlipp P . Basal ganglia calcification and psychosis in 22q11.2 deletion syndrome. Eur Psychiatry 2005; 20: 567–569.

    Article  CAS  PubMed  Google Scholar 

  83. Cao Z, Yu R, Dun K, Burke J, Caplin N, Greenaway T . 22q11.2 deletion presenting with severe hypocalcaemia, seizure and basal ganglia calcification in an adult man. Intern Med J 2011; 41: 63–66.

    Article  CAS  PubMed  Google Scholar 

  84. Hokama H, Shenton ME, Nestor PG, Kikinis R, Levitt JJ, Metcalf D et al. Caudate, putamen, and globus pallidus volume in schizophrenia: a quantitative MRI study. Psychiatry Res 1995; 61: 209–229.

    Article  CAS  PubMed  Google Scholar 

  85. Arnone D, Cavanagh J, Gerber D, Lawrie SM, Ebmeier KP, McIntosh AM . Magnetic resonance imaging studies in bipolar disorder and schizophrenia: meta-analysis. Br J Psychiatry 2009; 195: 194–201.

    Article  PubMed  Google Scholar 

  86. Simon TJ, Ding L, Bish JP, McDonald-McGinn DM, Zackai EH, Gee J . Volumetric, connective, and morphologic changes in the brains of children with chromosome 22q11.2 deletion syndrome: an integrative study. Neuroimage 2005; 25: 169–180.

    Article  PubMed  Google Scholar 

  87. Galderisi S, Quarantelli M, Volpe U, Mucci A, Cassano GB, Invernizzi G et al. Patterns of structural MRI abnormalities in deficit and nondeficit schizophrenia. Schizophr Bull 2008; 34: 393–401.

    Article  PubMed  Google Scholar 

  88. Styner M, Lieberman JA, McClure RK, Weinberger DR, Jones DW, Gerig G . Morphometric analysis of lateral ventricles in schizophrenia and healthy controls regarding genetic and disease-specific factors. Proc Natl Acad Sci USA 2005; 102: 4872–4877.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Exner C, Boucsein K, Degner D, Irle E, Weniger G . Impaired emotional learning and reduced amygdala size in schizophrenia: a 3-month follow-up. Schizophrenia Res 2004; 71: 493–503.

    Article  Google Scholar 

  90. Yoshida T, McCarley RW, Nakamura M, Lee K, Koo M-S, Bouix S et al. A prospective longitudinal volumetric MRI study of superior temporal gyrus gray matter and amygdala-hippocampal complex in chronic schizophrenia. Schizophrenia Res 2009; 113: 84–94.

    Article  Google Scholar 

  91. James AC, James S, Smith DM, Javaloyes A . Cerebellar, prefrontal cortex, and thalamic volumes over two time points in adolescent-onset schizophrenia. Am J Psychiatry 2004; 161: 1023–1029.

    Article  PubMed  Google Scholar 

  92. Yoshihara Y, Sugihara G, Matsumoto H, Suckling J, Nishimura K, Toyoda T et al. Voxel-based structural magnetic resonance imaging (MRI) study of patients with early onset schizophrenia. Ann Gen Psychiatry 2008; 7: 25.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Cascella NG, Fieldstone SC, Rao VA, Pearlson GD, Sawa A, Schretlen DJ . Gray-matter abnormalities in deficit schizophrenia. Schizophrenia Res 2010; 120: 63–70.

    Article  Google Scholar 

  94. Mané A, Falcon C, Mateos JJ, Fernandez-Egea E, Horga G, Lomeña F et al. Progressive gray matter changes in first episode schizophrenia: a 4-year longitudinal magnetic resonance study using VBM. Schizophrenia Res 2009; 114: 136–143.

    Article  Google Scholar 

  95. Neckelmann G, Specht K, Lund A, Ersland L, Smievoll AI, Neckelmann D et al. Mr morphometry analysis of grey matter volume reduction in schizophrenia: association with hallucinations. Int J Neurosci 2006; 116: 9–23.

    Article  PubMed  Google Scholar 

  96. Douaud G, Mackay C, Andersson J, James S, Quested D, Ray MK et al. Schizophrenia delays and alters maturation of the brain in adolescence. Brain 2009; 132: 2437–2448.

    Article  PubMed  Google Scholar 

  97. Rotarska-Jagiela A, Oertel-Knoechel V, DeMartino F, van de Ven V, Formisano E, Roebroeck A et al. Anatomical brain connectivity and positive symptoms of schizophrenia: a diffusion tensor imaging study. Psychiatry Res 2009; 174: 9–16.

    Article  PubMed  Google Scholar 

  98. Turetsky BI, Moberg PJ, Yousem DM, Doty RL, Arnold SE, Gur RE . Reduced olfactory bulb volume in patients with schizophrenia. Am J Psychiatry 2000; 157: 828–830.

    Article  CAS  PubMed  Google Scholar 

  99. Nopoulos PC, Ceilley JW, Gailis EA, Andreasen NC . An MRI study of midbrain morphology in patients with schizophrenia: relationship to psychosis, neuroleptics, and cerebellar neural circuitry. BPS 2001; 49: 13–19.

    CAS  Google Scholar 

  100. Koolschijn PC, van Haren NE, Hulshoff Pol HE, Kahn RS . Hypothalamus volume in twin pairs discordant for schizophrenia. Eur Neurol 2008; 18: 312–315.

    CAS  Google Scholar 

Download references

Acknowledgements

We thank Louise van der Weerd for helpful discussions during the initial phase of this project and Christine LaLiberté, Kim Stark and Matthijs van Eede for their assistance with aspects of the MRI scanning and analysis. We would also like to acknowledge the Ontario Mental Health Foundation (OHMF) for salary support (JE). This work was supported by grants from the US National Institute of Mental Health, Grants MH67068 (to MK and JAG) and MH077235 (to JAG) and the Canadian Institute for Health Research (CIHR) and the Ontario Brain Institute (OBI).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M Karayiorgou or J A Gogos.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Molecular Psychiatry website

Supplementary information

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ellegood, J., Markx, S., Lerch, J. et al. Neuroanatomical phenotypes in a mouse model of the 22q11.2 microdeletion. Mol Psychiatry 19, 99–107 (2014). https://doi.org/10.1038/mp.2013.112

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/mp.2013.112

Keywords

This article is cited by

Search

Quick links