Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Immediate Communication
  • Published:

Genome-wide association study in a Swedish population yields support for greater CNV and MHC involvement in schizophrenia compared with bipolar disorder

Abstract

Schizophrenia (SCZ) and bipolar disorder (BD) are highly heritable psychiatric disorders with overlapping susceptibility loci and symptomatology. We conducted a genome-wide association study (GWAS) of these disorders in a large Swedish sample. We report a new and independent case–control analysis of 1507 SCZ cases, 836 BD cases and 2093 controls. No single-nucleotide polymorphisms (SNPs) achieved significance in these new samples; however, combining new and previously reported SCZ samples (2111 SCZ and 2535 controls) revealed a genome-wide significant association in the major histocompatibility complex (MHC) region (rs886424, P=4.54 × 10−8). Imputation using multiple reference panels and meta-analysis with the Psychiatric Genomics Consortium SCZ results underscored the broad, significant association in the MHC region in the full SCZ sample. We evaluated the role of copy number variants (CNVs) in these subjects. As in prior reports, deletions were enriched in SCZ, but not BD cases compared with controls. Singleton deletions were more frequent in both case groups compared with controls (SCZ: P=0.003, BD: P=0.013), whereas the largest CNVs (>500 kb) were significantly enriched only in SCZ cases (P=0.0035). Two CNVs with previously reported SCZ associations were also overrepresented in this SCZ sample: 16p11.2 duplications (P=0.0035) and 22q11 deletions (P=0.03). These results reinforce prior reports of significant MHC and CNV associations in SCZ, but not BD.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Collins PY, Patel V, Joestl SS, March D, Insel TR, Daar AS et al. Grand challenges in global mental health. Nature 2011; 475: 27–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Craddock N, Owen MJ . The Kraepelinian dichotomy - going, going. but still not gone. Br J Psychiatry 2010; 196: 92–95.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Association AP. Diagnostic and Statistical Manual of Mental Disorders, 4th edn Association AP: Washington, DC, 1994.

  4. Perlis RH, Miyahara S, Marangell LB, Wisniewski SR, Ostacher M, DelBello MP et al. Long-term implications of early onset in bipolar disorder: data from the first 1000 participants in the systematic treatment enhancement program for bipolar disorder (STEP-BD). Biol Psychiatry 2004; 55: 875–881.

    Article  PubMed  Google Scholar 

  5. Angermeyer MC, Kuhn L . Gender differences in age at onset of schizophrenia. An overview. Eur Arch Psychiatry Neurol Sci 1988; 237: 351–364.

    Article  CAS  PubMed  Google Scholar 

  6. Saha S, Chant D, Welham J, McGrath J . A systematic review of the prevalence of schizophrenia. PLoS Med 2005; 2: e141.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Ivleva EI, Morris DW, Moates AF, Suppes T, Thaker GK, Tamminga CA . Genetics and intermediate phenotypes of the schizophrenia—bipolar disorder boundary. Neurosci Biobehav Rev 2010; 34: 897–921.

    Article  CAS  PubMed  Google Scholar 

  8. Smoller JW, Finn CT . Family, twin, and adoption studies of bipolar disorder. Am J Med Genet C Semin Med Genet 2003; 123C: 48–58.

    Article  PubMed  Google Scholar 

  9. Lichtenstein P, Yip BH, Bjork C, Pawitan Y, Cannon TD, Sullivan PF et al. Common genetic determinants of schizophrenia and bipolar disorder in Swedish families: a population-based study. Lancet 2009; 373: 234–239.

    Article  CAS  PubMed  Google Scholar 

  10. Purcell SM, Wray NR, Stone JL, Visscher PM, O'Donovan MC, Sullivan PF et al. Common polygenic variation contributes to risk of schizophrenia and bipolar disorder. Nature 2009; 460: 748–752.

    CAS  PubMed  Google Scholar 

  11. Shi J, Levinson DF, Duan J, Sanders AR, Zheng Y, Pe'er I et al. Common variants on chromosome 6p22.1 are associated with schizophrenia. Nature 2009; 460: 753–757.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Stefansson H, Ophoff RA, Steinberg S, Andreassen OA, Cichon S, Rujescu D et al. Common variants conferring risk of schizophrenia. Nature 2009; 460: 744–747.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Steinberg S, de Jong S, Andreassen OA, Werge T, Borglum AD, Mors O et al. Common variants at VRK2 and TCF4 conferring risk of schizophrenia. Hum Mol Genet 2011; 20: 4076–4081.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ripke S, Sanders AR, Kendler KS, Levinson DF, Sklar P, Holmans PA et al. Genome-wide association study identifies five new schizophrenia loci. Nat Genet 2011; 43: 969–976.

    Article  CAS  Google Scholar 

  15. Baum AE, Akula N, Cabanero M, Cardona I, Corona W, Klemens B et al. A genome-wide association study implicates diacylglycerol kinase eta (DGKH) and several other genes in the etiology of bipolar disorder. Mol Psychiatry 2008; 13: 197–207.

    Article  CAS  PubMed  Google Scholar 

  16. Ferreira MA, O'Donovan MC, Meng YA, Jones IR, Ruderfer DM, Jones L et al. Collaborative genome-wide association analysis supports a role for ANK3 and CACNA1C in bipolar disorder. Nat Genet 2008; 40: 1056–1058.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Cichon S, Muhleisen TW, Degenhardt FA, Mattheisen M, Miro X, Strohmaier J et al. Genome-wide association study identifies genetic variation in neurocan as a susceptibility factor for bipolar disorder. Am J Hum Genet 2011; 88: 372–381.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Sklar P, Ripke S, Scott LJ, Andreassen OA, Cichon S, Craddock N et al. Large-scale genome-wide association analysis of bipolar disorder identifies a new susceptibility locus near ODZ4. Nat Genet 2011; 43: 977–983.

    Article  CAS  PubMed Central  Google Scholar 

  19. Guilmatre A, Dubourg C, Mosca AL, Legallic S, Goldenberg A, Drouin-Garraud V et al. Recurrent rearrangements in synaptic and neurodevelopmental genes and shared biologic pathways in schizophrenia, autism, and mental retardation. Arch Gen Psychiatry 2009; 66: 947–956.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Mefford HC, Muhle H, Ostertag P, von Spiczak S, Buysse K, Baker C et al. Genome-wide copy number variation in epilepsy: novel susceptibility loci in idiopathic generalized and focal epilepsies. PLoS Genet 2010; 6: e1000962.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Moreno-De-Luca D, Mulle JG, Kaminsky EB, Sanders SJ, Myers SM, Adam MP et al. Deletion 17q12 is a recurrent copy number variant that confers high risk of autism and schizophrenia. Am J Hum Genet 2010; 87: 618–630.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Sebat J, Levy DL, McCarthy SE . Rare structural variants in schizophrenia: one disorder, multiple mutations; one mutation, multiple disorders. Trends Genet 2009; 25: 528–535.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. McCarthy SE, Makarov V, Kirov G, Addington AM, McClellan J, Yoon S et al. Microduplications of 16p11.2 are associated with schizophrenia. Nat Genet 2009; 41: 1223–1227.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Weiss LA, Shen Y, Korn JM, Arking DE, Miller DT, Fossdal R et al. Association between microdeletion and microduplication at 16p11.2 and autism. N Engl J Med 2008; 358: 667–675.

    Article  CAS  PubMed  Google Scholar 

  25. Levinson DF, Duan J, Oh S, Wang K, Sanders AR, Shi J et al. Copy number variants in schizophrenia: confirmation of five previous findings and new evidence for 3q29 microdeletions and VIPR2 duplications. Am J Psychiatry 2011; 168: 302–316.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Kristiansson E AP, Wistedt B . Validity of the diagnosis of schizophrenia in a psychiatric inpatient register. Nordisk Psykiatrik Tidsskrift 1987; 41: 229–234.

    Article  Google Scholar 

  27. Dalman C, Broms J, Cullberg J, Allebeck P . Young cases of schizophrenia identified in a national inpatient register—are the diagnoses valid? Soc Psychiatry Psychiatr Epidemiol 2002; 37: 527–531.

    Article  PubMed  Google Scholar 

  28. Ekholm B, Ekholm A, Adolfsson R, Vares M, Osby U, Sedvall GC et al. Evaluation of diagnostic procedures in Swedish patients with schizophrenia and related psychoses. Nord J Psychiatry 2005; 59: 457–464.

    Article  PubMed  Google Scholar 

  29. Sellgren C, Landen M, Lichtenstein P, Hultman CM, Langstrom N . Validity of bipolar disorder hospital discharge diagnoses: file review and multiple register linkage in Sweden. Acta Psychiatr Scand 2011; 124: 447–453.

    Article  CAS  PubMed  Google Scholar 

  30. Ryden E, Thase ME, Straht D, Aberg-Wistedt A, Bejerot S, Landen M . A history of childhood attention-deficit hyperactivity disorder (ADHD) impacts clinical outcome in adult bipolar patients regardless of current ADHD. Acta Psychiatr Scand 2009; 120: 239–246.

    Article  CAS  PubMed  Google Scholar 

  31. First MB SRL, Gibbon M, Williams JBW . Structured Clinical Interview for DSM-IV Axis I Disorders, Clinician Version (SCID-CV). American Psychiatric Press, Inc: Arlington, VA, USA, 1996.

    Google Scholar 

  32. Korn JM, Kuruvilla FG, McCarroll SA, Wysoker A, Nemesh J, Cawley S et al. Integrated genotype calling and association analysis of SNPs, common copy number polymorphisms and rare CNVs. Nat Genet 2008; 40: 1253–1260.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Browning SR, Browning BL . Rapid and accurate haplotype phasing and missing-data inference for whole-genome association studies by use of localized haplotype clustering. Am J Hum Genet 2007; 81: 1084–1097.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Altshuler DM, Gibbs RA, Peltonen L, Dermitzakis E, Schaffner SF, Yu F et al. Integrating common and rare genetic variation in diverse human populations. Nature 2010; 467: 52–58.

    Article  CAS  PubMed  Google Scholar 

  35. McMichael AJ, Jones EY . Genetics. First-class control of HIV-1. Science 2010; 330: 1488–1490.

    Article  CAS  PubMed  Google Scholar 

  36. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 2007; 81: 559–575.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Pe'er I, Yelensky R, Altshuler D, Daly MJ . Estimation of the multiple testing burden for genomewide association studies of nearly all common variants. Genet Epidemiol 2008; 32: 381–385.

    Article  PubMed  Google Scholar 

  38. Lee PH, O'Dushlaine C, Purcell SM . Inrich: interval-based enrichment analysis for genome-wide association studies. Bioinformatics advance online publication, 17 April 2012 (e-pub ahead of print).

  39. Moskvina V, O'Dushlaine C, Purcell S, Craddock N, Holmans P, O'Donovan MC . Evaluation of an approximation method for assessment of overall significance of multiple-dependent tests in a genomewide association study. Genet Epidemiol 2011; 35: 861–866.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Redon R, Ishikawa S, Fitch KR, Feuk L, Perry GH, Andrews TD et al. Global variation in copy number in the human genome. Nature 2006; 444: 444–454.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Handsaker RE, Korn JM, Nemesh J, McCarroll SA . Discovery and genotyping of genome structural polymorphism by sequencing on a population scale. Nat Genet 2011; 43: 269–276.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. International Schizophrenia Consortium. Rare chromosomal deletions and duplications increase risk of schizophrenia. Nature 2008; 455: 237–241.

    Article  Google Scholar 

  43. Smith EN, Bloss CS, Badner JA, Barrett T, Belmonte PL, Berrettini W et al. Genome-wide association study of bipolar disorder in European American and African American individuals. Mol Psychiatry 2009; 14: 755–763.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Lee KW, Woon PS, Teo YY, Sim K . Genome wide association studies (GWAS) and copy number variation (CNV) studies of the major psychoses: What have we learnt? Neurosci Biobehav Rev 2012; 36: 556–571.

    Article  CAS  PubMed  Google Scholar 

  45. O'Dushlaine C, Kenny E, Heron E, Donohoe G, Gill M, Morris D et al. Molecular pathways involved in neuronal cell adhesion and membrane scaffolding contribute to schizophrenia and bipolar disorder susceptibility. Mol Psychiatry 2011; 16: 286–292.

    Article  CAS  PubMed  Google Scholar 

  46. Walsh T, McClellan JM, McCarthy SE, Addington AM, Pierce SB, Cooper GM et al. Rare structural variants disrupt multiple genes in neurodevelopmental pathways in schizophrenia. Science 2008; 320: 539–543.

    Article  CAS  PubMed  Google Scholar 

  47. Zhang D, Cheng L, Qian Y, Alliey-Rodriguez N, Kelsoe JR, Greenwood T et al. Singleton deletions throughout the genome increase risk of bipolar disorder. Mol Psychiatry 2009; 14: 376–380.

    Article  CAS  PubMed  Google Scholar 

  48. McQuillin A, Bass N, Anjorin A, Lawrence J, Kandaswamy R, Lydall G et al. Analysis of genetic deletions and duplications in the University College London bipolar disorder case control sample. Eur J Hum Genet 2011; 19: 588–592.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Grozeva D, Kirov G, Ivanov D, Jones IR, Jones L, Green EK et al. Rare copy number variants: a point of rarity in genetic risk for bipolar disorder and schizophrenia. Arch Gen Psychiatry 2010; 67: 318–327.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Shinawi M, Liu P, Kang SH, Shen J, Belmont JW, Scott DA et al. Recurrent reciprocal 16p11.2 rearrangements associated with global developmental delay, behavioural problems, dysmorphism, epilepsy, and abnormal head size. J Med Genet 2010; 47: 332–341.

    Article  CAS  PubMed  Google Scholar 

  51. Schaaf CP, Goin-Kochel RP, Nowell KP, Hunter JV, Aleck KA, Cox S et al. Expanding the clinical spectrum of the 16p11.2 chromosomal rearrangements: three patients with syringomyelia. Eur J Hum Genet 2011; 19: 152–156.

    Article  PubMed  Google Scholar 

  52. Sampson MG, Coughlin II CR, Kaplan P, Conlin LK, Meyers KE, Zackai EH et al. Evidence for a recurrent microdeletion at chromosome 16p11.2 associated with congenital anomalies of the kidney and urinary tract (CAKUT) and Hirschsprung disease. Am J Med Genet A 2010; 152A: 2618–2622.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are deeply grateful for the participation of all subjects contributing to this research, and to the collection team that worked to recruit them: Emma Flordal-Thelander, Ann-Britt Holmgren, Marie Hallin, Marie Lundin, Ann-Kristin Sundberg, Christina Pettersson, Radja Satgunanthan-Dawoud, Sonja Hassellund, Malin Rådstrom, Birgitta Ohlander, Leila Nyrén, Isabelle Kizling, Louise Frisén, Inger Röhmer, Catharina Lavebratt, Malin Kärn, Martina Wennberg and Agneta Carswärd-Kjellin. We would also like to thank Professor Martin Schalling for facilitating collection of many subjects with BD. Funding support was provided by the Stanley Center for Psychiatric Research, Broad Institute from a grant from Stanley Medical Research Institute, NIMH MH077139 (PFS), the Karolinska Institutet, Karolinska University Hospital, the Swedish Research Council, ALF grant from Swedish County Council and Söderström Königska Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S E Bergen.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Molecular Psychiatry website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bergen, S., O'Dushlaine, C., Ripke, S. et al. Genome-wide association study in a Swedish population yields support for greater CNV and MHC involvement in schizophrenia compared with bipolar disorder. Mol Psychiatry 17, 880–886 (2012). https://doi.org/10.1038/mp.2012.73

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/mp.2012.73

Keywords

This article is cited by

Search

Quick links